Materiales de Construcción
Latest Publications


TOTAL DOCUMENTS

1717
(FIVE YEARS 92)

H-INDEX

21
(FIVE YEARS 3)

Published By Departmento De Publicaciones Del Csic

1988-3226, 0465-2746

2021 ◽  
Vol 71 (344) ◽  
pp. e263
Author(s):  
E. Menéndez ◽  
R. García-Roves ◽  
B. Aldea ◽  
E. Puerto ◽  
H. Recino

The alkali-silica reaction has been studied in depth due to the evolution in the knowledge of the expansive phenomenon. One of its most important aspects is the reaction rate of the aggregates. In Spain, at the early 90s of the 20th century, aggregates were considered almost non-reactive. However, the use of accelerated curing and other environmental factors revealed that there were potentially reactive siliceous aggregates. Nevertheless, there are several siliceous and limestone aggregates with siliceous inclusions that show reactivity over long period. In the present work, open porosity, expansion and petrography with quartz reactivity index have been determined, in 68 siliceous, limestone and dolomitic aggregates, from quarries located in areas with diagnostic reactivity. Based on these parameters and their interrelation, a classification method is proposed to detect slow-reacting aggregates.


2021 ◽  
Vol 71 (344) ◽  
pp. e267
Author(s):  
G. Sotorrío ◽  
J. Alonso ◽  
N.O.E. Olsson ◽  
J.A. Tenorio

One of the major challenges facing 3D printing for construction is the technological suitability, ‘printability’, of the materials used. These cement-based materials differ from those used in other sectors, which has a series of conditioning factors that are the object of the present analysis. This article first reviews the definition of the term ‘printability’ and its constituent stages. Those stages condition the requirements to be met by cement-based materials, whether designed for other uses or developed ad hoc, and therefore the tests applicable to determine their aptitude for use in additive manufacturing for construction. That is followed by a review of the standardised tests presently in place for mortars and concretes that can be used to verify a material’s compliance with such requirements. The paper concludes with a recommendation on the advisability of developing a standard test or suite of tests to ascertain printability.


2021 ◽  
Vol 71 (344) ◽  
pp. e264
Author(s):  
M. Giménez ◽  
M.C. Alonso ◽  
E. Menéndez ◽  
M. Criado

This paper studies the durability of Ultra High Performance Fibre Reinforced Concrete (UHPFRC) with high Blast Furnace Slag content (BFS) and nanoadditives such as crystalline admixture (CA), alumina nanofibres (ANF) and cellulose nanocrystals (CNC), exposed to different aggressive environmental conditions: 1) three aggressive media: a) deionized water (dw), b) sulphate rich solution (ss) and c) simulated geothermal water (sgw) containing sulphate and chloride; 2) two water interaction conditions: a) static and b) dynamic (water impact); and 3) with and without the presence of cracks. Durability was analysed over 24 months, measuring several physical and chemical parameters of the system, recording changes in both the aggressive media and the concrete. All UHPFRC types demonstrate good durability, showing high resistance to expansion and deformation in the sulphate-rich media. A leaching process occurs in all water interaction systems, the dynamic interaction in sgw being the most aggressive. The interaction of sgw inside the crack favours the formation of solid phases such as calcium carbonates and ettringite, while the presence of nanoadditives affects the response of both the matrix and the formation of precipitates within the crack.


2021 ◽  
Vol 71 (344) ◽  
pp. e266
Author(s):  
J.P. Gutiérrez ◽  
S. Martínez ◽  
A. De Diego ◽  
V.J. Castro ◽  
L. Echevarría

Carbon fiber jacketing is an efficient technique for increasing the strength and strain capacity of concrete circular and square section columns subjected to axial load, although confinement efficiency decreases for rectangular cross-section members. The research project BIA 2016-80310-P includes an experimental program on intermediate-size plain concrete specimens strengthened with carbon fiber jackets, mostly with square and rectangular cross-sections. The results, alongside others with similar characteristics from two databases published, are compared to predictions of four international guides. The incidence of the key parameters in the experimental results is analyzed, such as the aspect ratio of the section, the effective strain in FRP jacket attained at failure or the rounded corner radius. As a result, two efficiency strain factors are proposed, one for circular and another for rectangular specimens. The predictions contained in certain guides, based on a simple linear design-model, are improved by using the proposed efficiency strain factor for rectangular sections.


2021 ◽  
Vol 71 (344) ◽  
pp. e262
Author(s):  
P.M. Carmona-Quiroga ◽  
A. Pachón-Montaño ◽  
J. Queipo-de-Llano ◽  
J.A. Martín-Caro ◽  
D. López ◽  
...  

That the preservation of twentieth concrete heritage is an area scantly explored can be attributed to a lack of appreciation for such a young material. In most cases conservation is broached from a technical perspective with little regard for heritage value. Ongoing assessment of the condition of structures is the primary strategy to minimise such misguided action. This study involved characterising the condition of the concrete in a number of singular elements forming part of the Eduardo Torroja Institute for Construction Science headquarters at Madrid, Spain, a modernist compound listed by the city of Madrid as a protected asset. The in situ findings using non-destructive and laboratory techniques revealed the core concrete to be in good condition. The surface material, however, exhibits signs of durability issues calling for conservation treatments and techniques compatible with the preservation of the integrity and authenticity of this young heritage material.


2021 ◽  
Vol 71 (344) ◽  
pp. e265
Author(s):  
J. E. Ramón ◽  
Á. Castillo ◽  
I. Martínez

The need for proactive maintenance of reinforced concrete structures with non-destructive testing (NDT) is less disputable today than ever. One of the most promising strategies in this regard is the in-situ measurement of the reinforcement corrosion rate. This study explored the reliability of modulated current confinement method (hereafter MCC) based on a review of in-situ measurements made with that technique in real-life structures over a 13-year period. The most prominent problems detected included defective confinement of the polarization current in low-resistivity environments and over-polarization of passive reinforcement. The findings, which showed enhancement of MCC reliability to depend on improving the electrochemical current regulation and control methodologies presently in place, are being applied to improve the design of the next generation of corrosion meters.


2021 ◽  
Vol 71 (344) ◽  
pp. e261
Author(s):  
H.R. Guzmán-Carrillo ◽  
E. Jiménez Relinque ◽  
A. Manzano-Ramírez ◽  
M. Castellote ◽  
M. Romero-Pérez

ZnO nanospheres were synthesised and then deposited by both single- and double-fire fast processes on as-prepared ceramic substrates. The photocatalytic degradation of resazurin ink was tested under UV light. The single-fired samples did not show any evidence of photocatalytic activity because the nanoparticles melted during sintering at 1210°C. The double-fire ZnO spray-coating method successfully produced glazed materials with an active ZnO surface layer despite the high sintering temperature. The influence of experimental parameters, including the ZnO nanoparticle loading (0.03 to 1 mg/cm2) and firing temperature (650 to 800°C), were also investigated. Samples with a ZnO loading of 1 g/cm2 fired at 650°C showed the best photocatalytic activity. Increasing the temperature to 700 and 800°C led to the coalescence of ZnO nanoparticles, which reduced the photocatalytic activity.


2021 ◽  
Vol 71 (344) ◽  
pp. e260
Author(s):  
D. Revuelta ◽  
J.L. García-Calvo ◽  
P. Carballosa ◽  
F. Pedrosa

The determination of thermal conductivity of cement-based materials is relevant from the perspective of buildings’ energy efficiency. The absence of unified tests for its measurement in mortars and concrete results in a heterogeneity of the data available in the literature. This work’s purpose is to determine the relevant influence from a a statistical viewpoint that three factors; degree of saturation, measuring time and use of a conductive paste, have in the measurement of the conductivity using the hot-wire needle probe method in two concretes with different thermal behavior: standard-weight concrete and lightweight concrete. The results obtained allow for the establishment of recommendations for future researchers on the minimum information to be included in their reports of thermal conductivity of cement-based materials by the needle probe method, the need to treat outliers, the most favorable saturation conditions and measuring times, as well as the possible benefits of using conductive pastes.


2021 ◽  
Vol 71 (344) ◽  
pp. e259
Author(s):  
F. Puertas ◽  
J. A. Suárez-Navarro ◽  
M. M. Alonso ◽  
C. Gascó

The use of industrial waste and/or by-products as alternative sources of raw materials in building materials has become standard practice. The result, more sustainable construction, is contributing to the institution of a circular economy. Nonetheless, all necessary precautions must be taken to ensure that the inclusion and use of such materials entail no new health hazard for people or their environment. Due to the processes involved in generating industrial waste/by-products, these alternative or secondary materials may be contaminated with heavy metals, other undesirable chemicals or high levels of natural radioactivity that may constrain their use. In-depth and realistic research on such industrial waste is consequently requisite to its deployment in building materials. This paper reviews the basic concepts associated with radioactivity and natural radioactivity, focusing on industrial waste/by-products comprising Naturally Occurring Radioactive Materials (NORM) used in cement and concrete manufacture. Updated radiological data are furnished on such waste (including plant fly ash, iron and steel mill slag, bauxite and phosphogypsum waste) and on other materials such as limestone, gypsum and so on. The paper also presents recent findings on radionuclide activity concentrations in Portland cements and concretes not bearing NORMs. The role of natural aggregate in end concrete radiological behaviour is broached. The radiological behaviour of alternative non-portland cements and concretes, such as alkali-activated materials and geopolymers, is also addressed.


2021 ◽  
Vol 71 (343) ◽  
pp. e256
Author(s):  
E. Bernat-Maso ◽  
L. Gil ◽  
M.J. Lis ◽  
E. Teneva

Interaction between microbially induced calcium carbonate precipitation (MICP) and compaction procedures to stabilise raw soil materials has been studied with the aim of producing earthen engineering structures. Initial tests to optimise MICP in aqueous medium and in selected soils were performed. MICP and compaction were finally applied to assess medium-size elements. The main result was that sandy soils should be compacted before irrigation treatment to close the existing voids and prevent bacterial sweeping, whereas clayey soils should be compacted after irrigation treatment to avoid the plugging effect. MICP improved small sand soil compressive strength by up to 32% over the value reached by compaction alone. However, MICP had no positive effect on coarse soils and soils with an optimum particle size distribution: MICP treatment was not able to fill large connected voids in the first case and it caused little void generation due to bacteria sporulation in the second.


Sign in / Sign up

Export Citation Format

Share Document