Dynamic characterization of biocomposites under high strain rate compression loading with split Hopkinson pressure bar and digital image correlation technique

2018 ◽  
Vol 9 (3) ◽  
pp. 115-121 ◽  
Author(s):  
Maharshi J. Dave ◽  
Tejas S. Pandya ◽  
Damian Stoddard ◽  
Jason Street
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Martina Scapin ◽  
Lorenzo Peroni ◽  
Massimiliano Avalle

The aim of this work is to identify the tensile strength of alumina (Corbit98), by performing Brazilian tests at different loading rate. In this kind of test, generally used for brittle material in static loading conditions, a cylindrical specimen is diametrically compressed and failure is generated in the middle of the component as a consequence of a positive tensile stress. In this work, this experimental technique was applied also in dynamic loading conditions by using a setup based on the Split Hopkinson Pressure Bar. Due to the properties of the investigated material, among which are high hardness, high compressive strength, and brittle behaviour, some precautions were needed to assure the validity of the tests. Digital Image Correlation techniques were applied for the analysis of high framerate videos.


2015 ◽  
Vol 816 ◽  
pp. 795-803
Author(s):  
Yan Ling Wang ◽  
Song Xiao Hui ◽  
Wen Jun Ye ◽  
Rui Liu

The mechanical properties and fracture failure behavior of the near β-type Ti-5Al-5Mo-5V-3Cr-X (X = 1Fe or 1Zr) titanium alloys were studied by Split Hopkinson Pressure Bar (SHPB) experiment under the dynamic loading conditions at a strain rate of 1.5 × 103 s-1–5.0 × 103 s-1. Results showed that the SHPB specimen fractured in the direction of maximum shearing stress at an angle of 45° with the compression axis. The fracture surface revealed the shear and tension zones with cleavage steps and parabolic dimples. Severe early unloading was observed on the Ti-5553 alloy under a strain rate of 4,900 s-1 loading condition, and the dynamic property of the Ti-55531Zr alloy was proved to be the optimal.


Sign in / Sign up

Export Citation Format

Share Document