scholarly journals Effect of the ingestion in the WRF model of different Sentinel-derived and GNSS-derived products: analysis of the forecasts of a high impact weather event

2019 ◽  
Vol 52 (sup4) ◽  
pp. 16-33 ◽  
Author(s):  
Martina Lagasio ◽  
Luca Pulvirenti ◽  
Antonio Parodi ◽  
Giorgio Boni ◽  
Nazzareno Pierdicca ◽  
...  
2015 ◽  
Vol 40 (9) ◽  
pp. 584-597 ◽  
Author(s):  
A. V. Murav’ev ◽  
D. B. Kiktev ◽  
A. Yu. Bundel’ ◽  
T. G. Dmitrieva ◽  
A. V. Smirnov

Weather ◽  
2019 ◽  
Author(s):  
Valentina Pavan ◽  
Miria Celano ◽  
Anna Fornasiero ◽  
Paolo Patruno ◽  
Virginia Poli ◽  
...  

2018 ◽  
Vol 93 (3) ◽  
pp. 1565-1587 ◽  
Author(s):  
P. Moudi Igri ◽  
Roméo S. Tanessong ◽  
D. A. Vondou ◽  
Jagabandhu Panda ◽  
Adamou Garba ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 1513-1531 ◽  
Author(s):  
Oriol Rodríguez ◽  
Joan Bech ◽  
Juan de Dios Soriano ◽  
Delia Gutiérrez ◽  
Salvador Castán

Abstract. Post-event damage assessments are of paramount importance to document the effects of high-impact weather-related events such as floods or strong wind events. Moreover, evaluating the damage and characterizing its extent and intensity can be essential for further analysis such as completing a diagnostic meteorological case study. This paper presents a methodology to perform field surveys of damage caused by strong winds of convective origin (i.e. tornado, downburst and straight-line winds). It is based on previous studies and also on 136 field studies performed by the authors in Spain between 2004 and 2018. The methodology includes the collection of pictures and records of damage to human-made structures and on vegetation during the in situ visit to the affected area, as well as of available automatic weather station data, witness reports and images of the phenomenon, such as funnel cloud pictures, taken by casual observers. To synthesize the gathered data, three final deliverables are proposed: (i) a standardized text report of the analysed event, (ii) a table consisting of detailed geolocated information about each damage point and other relevant data and (iii) a map or a KML (Keyhole Markup Language) file containing the previous information ready for graphical display and further analysis. This methodology has been applied by the authors in the past, sometimes only a few hours after the event occurrence and, on many occasions, when the type of convective phenomenon was uncertain. In those uncertain cases, the information resulting from this methodology contributed effectively to discern the phenomenon type thanks to the damage pattern analysis, particularly if no witness reports were available. The application of methodologies such as the one presented here is necessary in order to build homogeneous and robust databases of severe weather cases and high-impact weather events.


2018 ◽  
Author(s):  
Youssef Wehbe ◽  
Marouane Temimi ◽  
Michael Weston ◽  
Naira Chaouch ◽  
Oliver Branch ◽  
...  

Abstract. This study investigates an extreme weather event that impacted the United Arab Emirates (UAE) in March 2016 using the Weather Research and Forecasting (WRF) model version 3.7.1 coupled with its hydrological modeling extension package (Hydro). Six-hourly forecasted forcing records at 0.5o spatial resolution, obtained from the NCEP Global Forecast System (GFS), are used to drive the three nested downscaling domains of both standalone WRF and coupled WRF/WRF-Hydro configurations for the recent flood-triggering storm. Ground and satellite observations over the UAE are employed to validate the model results. Precipitation, soil moisture, and cloud fraction retrievals from GPM (30-minute, 0.1o product), AMSR2 (daily, 0.1o product), and MODIS (daily, 5 km product), respectively, are used to assess the model output. The Pearson correlation coefficient (PCC), relative bias (rBIAS) and root-mean-square error (RMSE) are used as performance measures. Results show reductions of 24 % and 13 % in RMSE and rBIAS measures, respectively, in precipitation forecasts from the coupled WRF/WRF-Hydro model configuration, when compared to standalone WRF. The coupled system also shows improvements in global radiation forecasts, with reductions of 45 % and 12 % for RMSE and rBIAS, respectively. Moreover, WRF-Hydro was able to simulate the spatial distribution of soil moisture reasonably well across the study domain when compared to AMSR2 satellite soil moisture estimates, despite a noticeable dry/wet bias in areas where soil moisture is high/low. The demonstrated improvement, at the local scale, implies that WRF-Hydro coupling may enhance hydrologic forecasts and flash flood guidance systems in the region.


2006 ◽  
Vol 16 (3) ◽  
pp. 167-180 ◽  
Author(s):  
Kate M. Thomas ◽  
Dominique F. Charron ◽  
David Waltner-Toews ◽  
Corinne Schuster ◽  
Abdel R. Maarouf ◽  
...  

2019 ◽  
Vol 12 (2) ◽  
pp. 80-90 ◽  
Author(s):  
Zhenglong LI ◽  
Jun LI ◽  
Timothy J. SCHMIT ◽  
Pei WANG ◽  
Agnes LIM ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document