flash flood
Recently Published Documents


TOTAL DOCUMENTS

1781
(FIVE YEARS 742)

H-INDEX

59
(FIVE YEARS 17)

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 91-104
Author(s):  
BIKRAM SINGH ◽  
ROHIT THAPLIYAL

Cloudburst is an extreme weather event characterised by the occurrence of a large amount of rainfall over a small area within a short span of time with a rainfall of 100 mm or more in one hour. It is responsible for flash flood, inundation of low lying areas and landslides in hills causing extensive damages to life and property. During monsoon season 2017 five number of cloudburst events are observed over Uttarakhand and analysed. Self Recording Rain Gauge (SRRG) and 15 minutes interval data from the newly installed General Packet Radio Service (GPRS) based Automatic Weather Station (AWS) are able to capture the cloudburst events over some areas in Uttarakhand. In this paper, an attempt has been made to find out the significant synoptic and thermodynamic conditions associated with the occurrence of the cloudburst events in Uttarakhand. These 5 cases of cloudburst events that are captured during the month of June, July and August 2017 in Uttarakhand are studied in detail. Synoptically, it is observed that the existence of trough at mean sea level from Punjab to head Bay of Bengal running close to Uttarakhand, the movement of Western Disturbance over north Pakistan and adjoining Jammu & Kashmir and existence of cyclonic circulation over north Rajasthan and neighbourhood are favourable conditions. Also, the presence of strong south-westerly wind flow from the Arabian Sea across West Rajasthan and Haryana on upper air charts are found during these events. Thermodynamically, the Convective Available Potential Energy (CAPE) is found to be high (more than 1100 J/Kg) during most of the cases and vertically integrated precipitable water content (PWC) is more than 55mm. The GPRS based AWS system can help in prediction of the cloud burst event over the specified location with a lead time upto half to one hour in association with radar products.  


Author(s):  
E. M. Sellami ◽  
M. Maanan ◽  
H. Rhinane

Abstract. Since the industrial revolution, the world is experiencing a huge change in its climate, which causes many imbalances such as flash floods (FF). The aim of this study is to propose a new approach for detection and forecasting of flash flood susceptibility in the city of Tetouan, Morocco. For this regard, support vector machine (SVM), logistic regression (LR), random forest (RF), Naïve Bayes (NB) and Artificial neural network (ANN) are used based on 1101 points (680 flood points and 421 non-flood points) and 9 flash-flood predictors (Elevation , Slope , Aspect , LU/LC , Stream Power Index , Plan curvature , Profile Curvature , Topographic Position Index and Topographic Wetness Index ) that were extracted from the DEM (10m resolution) and satellite imagery (Sentinel 2B) of the study area . Models were trained on 70% and tested on 30% of this dataset also they were evaluated using several metrics such as the Receiver Operating Characteristic (ROC) Curve, precision, recall, score and kappa index. The result demonstrated that RF (AUC = 0.99, Accuracy = 96%, Kappa statistics = 0.92) has the highest performance, followed by ANN (AUC = 0.98, Accuracy = 95%, Kappa statistics = 0.89) and SVM (AUC = 0.96, Accuracy = 92%, Kappa statistics = 0.80). The proposed approach is an effective tool for forecasting and predicting FF that can help reduce the severity of this disaster.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 175
Author(s):  
Lloyd Ling ◽  
Sai Hin Lai ◽  
Zulkifli Yusop ◽  
Ren Jie Chin ◽  
Joan Lucille Ling

The curve number (CN) rainfall–runoff model is widely adopted. However, it had been reported to repeatedly fail in consistently predicting runoff results worldwide. Unlike the existing antecedent moisture condition concept, this study preserved its parsimonious model structure for calibration according to different ground saturation conditions under guidance from inferential statistics. The existing CN model was not statistically significant without calibration. The calibrated model did not rely on the return period data and included rainfall depths less than 25.4 mm to formulate statistically significant urban runoff predictive models, and it derived CN directly. Contrarily, the linear regression runoff model and the asymptotic fitting method failed to model hydrological conditions when runoff coefficient was greater than 50%. Although the land-use and land cover remained the same throughout this study, the calculated CN value of this urban watershed increased from 93.35 to 96.50 as the watershed became more saturated. On average, a 3.4% increase in CN value would affect runoff by 44% (178,000 m3). This proves that the CN value cannot be selected according to the land-use and land cover of the watershed only. Urban flash flood modelling should be formulated with rainfall–runoff data pairs with a runoff coefficient > 50%.


2022 ◽  
Vol 8 ◽  
Author(s):  
Alexandra Rosa ◽  
Cláudio Cardoso ◽  
Rui Vieira ◽  
Ricardo Faria ◽  
Ana R. Oliveira ◽  
...  

The Island Mass Effect has been primarily attributed to nutrient enhancement of waters surrounding oceanic islands due to physical processes, whereas the role of land runoff has seldom been considered. Land runoff can be particularly relevant in mountainous islands, highly susceptible to torrential rainfall that rapidly leads to flash floods. Madeira Island, located in the Northeast Atlantic Ocean, is historically known for its flash flood events, when steep streams transport high volumes of water and terrigenous material downstream. A 22-year analysis of satellite data revealed that a recent catastrophic flash flood (20 February 2010) was responsible for the most significant concentration of non-algal Suspended Particulate Matter (SPM) and Chlorophyll-a at the coast. In this context, our study aims to understand the impact of the February 2010 flash flood events on coastal waters, by assessing the impact of spatial and temporal variability of wind, precipitation, and river discharges. Two specific flash floods events are investigated in detail (2 and 20 February 2010), which coincided with northeasterly and southwesterly winds, respectively. Given the lack of in situ data documenting these events, a coupled air-sea-land numerical framework was used, including hydrological modeling. The dynamics of the modeled river plumes induced by flash floods were strongly influenced by the wind regimes subsequently affecting coastal circulation, which may help to explain the differences between observed SPM and Chlorophyll-a distributions. Model simulations showed that during northeasterly winds, coastal confinement of the buoyant river plume persisted on the island’s north coast, preventing offshore transport of SPM. This mechanism may have contributed to favorable conditions for phytoplankton growth, as captured by satellite-derived Chlorophyll-a in the northeastern coastal waters. On the island’s south coast, strong ocean currents generated in the eastern island flank promoted strong vertical shear, contributing to vertical mixing. During southwesterly winds, coastal confinement of the plume with strong vertical density gradient was observed on the south side. The switch to eastward winds spread the south river plume offshore, forming a filament of high Chlorophyll-a extending 70 km offshore. Our framework demonstrates a novel methodology to investigate ocean productivity around remote islands with sparse or absent field observations.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 126
Author(s):  
Youjie Jin ◽  
Jianyun Zhang ◽  
Na Liu ◽  
Chenxi Li ◽  
Guoqing Wang

Flash-flood disasters pose a serious threat to lives and property. To meet the increasing demand for refined and rapid assessment on flood loss, this study exploits geomatic technology to integrate multi-source heterogeneous data and put forward the comprehensive risk index (CRI) calculation with the fuzzy comprehensive evaluation (FCE). Based on mathematical correlations between CRIs and actual losses of flood disasters in Weifang City, the direct economic loss rate (DELR) model and the agricultural economic loss rate (AELR) model were developed. The case study shows that the CRI system can accurately reflect the risk level of a flash-flood disaster. Both models are capable of simulating disaster impacts. The results are generally consistent with actual impacts. The quantified economic losses generated from simulation are close to actual losses. The spatial resolution is up to 100 × 100 m. This study provides a loss assessment method with high temporal and spatial resolution, which can quickly assess the loss of rainstorm and flood disasters. The method proposed in this paper, coupled with a case study, provides a reliable reference to loss assessment on flash floods caused disasters and will be helpful to the existing literature.


Author(s):  
Bambang Dwi Dasanto ◽  
Iwan Ridwansyah ◽  
Muh Taufik ◽  
Cut Azizah ◽  
Hidayat Pawitan

2022 ◽  
pp. 689-741
Author(s):  
George Varlas ◽  
Marios Anagnostou ◽  
Christos Spyrou ◽  
Aikaterini Pappa ◽  
Angeliki Mentzafou ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document