Statistical analysis of dependent competing risks model in constant stress accelerated life testing with progressive censoring based on copula function

2018 ◽  
Vol 2 (1) ◽  
pp. 48-57
Author(s):  
Xuchao Bai ◽  
Yimin Shi ◽  
Yiming Liu ◽  
Bin Liu
Author(s):  
Abd El-Maseh, M. P

<p>In this paper, the Bayesian estimation for the unknown parameters for the bivariate generalized exponential (BVGE) distribution under Bivariate censoring type-I samples with constant stress accelerated life testing (CSALT) are discussed. The scale parameter of the lifetime distribution at constant stress levels is assumed to be an inverse power law function of the stress level. The parameters are estimated by Bayesian approach using Markov Chain Monte Carlo (MCMC) method based on Gibbs sampling. Then, the numerical studies are introduced to illustrate the approach study using samples which have been generated from the BVGE distribution.</p>


2011 ◽  
Vol 121-126 ◽  
pp. 1274-1278 ◽  
Author(s):  
Juan Chen ◽  
De Yi Wang ◽  
Yong Ling Fu ◽  
Xiao Ye Qi

This paper discusses the principle and method of Double-Crossed Step-Down-Stress Accelerated Life Testing (DCSDS-ALT) for pneumatic cylinders. As to pneumatic cylinder, the step-down-stress testing failure physics can be described as cumulative degradation model. Temperature and frequency are normally chosen as the test stresses. The failure data obtained under DCSDS-ALT testing steps can be converted to those under constant stress testing. And the reliability specifications can be derived accordingly. To compare Double-stress ALTs with traditional constant stress testing shows Double-stress ALTs can meet the accuracy demand. The 5% of average lifetime estimation error and 1.85% of the characteristic lifetime error are very satisfying for pneumatic industrial lifetime prediction.


Sign in / Sign up

Export Citation Format

Share Document