Runoff Phosphorus Losses as Related to Soil Test Phosphorus and Degree of Phosphorus Saturation on Piedmont Soils Under Conventional and No-Tillage

2004 ◽  
Vol 35 (19-20) ◽  
pp. 2987-3007 ◽  
Author(s):  
David D. Tarkalson ◽  
Robert L. Mikkelsen
2012 ◽  
Vol 21 (3) ◽  
pp. 307-324 ◽  
Author(s):  
Antti Iho ◽  
Marita Laukkanen

This study analyzes the economic feasibility of gypsum amendment as a means to reduce particulate and dissolved phosphorus loads from arable areas. To this end, an optimization model is developed that includes gypsum amendment as well as matching phosphorus fertilization to crop need and the level of soil phosphorus reserves as phosphorus load mitigation measures, with soil phosphorus reserves measured by soil test phosphorus (STP). The optimal extent of gypsum amendment is then determined simultaneously with optimal fertilization use as a function of field STP level. The results indicate that whether or not gypsum amendment is economically feasible depends on field erosion susceptibility and STP level. When accounting for the costs and benefits to the society on the whole, gypsum treatment suits best to mitigation of phosphorus losses from soils with excessively high phosphorus reserves; once a threshold STP level is reached, gypsum amendment is optimally given up. This threshold level depends on field slope and on society’s willingness to pay for water quality.


2007 ◽  
Vol 87 (1) ◽  
pp. 73-83 ◽  
Author(s):  
D. Kimaragamage ◽  
O O Akinremi ◽  
D. Flaten ◽  
J. Heard

Quantitative relationships between soil test phosphorus (STP) methods are needed to guide P management especially in manured soils with high P. Our objectives were: (i) to compare amounts of P extracted by different methods; (ii) to develop and verify regression equations to convert results among methods; and (iii) to establish environmental P thresholds for different methods, in manured and non-manured soils of Manitoba. We analyzed 214 surface soil samples (0–15 cm), of which 51 had previous manure application. Agronomic STP methods were Olsen (O-P), Mehlich-3 (M3-P), Kelowna-1 (original; K1-P), Kelowna-2 (modified; K2-P), Kelowna-3 (modified; K3-P), Bray-1 (B1-P) and Miller and Axley (MA-P), while environmental STP methods were water extractable (W-P), Ca Cl2 extractable (Ca-P) and iron oxide impregnated filter paper (FeO-P) methods. The different methods extracted different amounts of P, but were linearly correlated. For an O-P range of 0–30 mg kg-1, relationships between O-P and other STP were similar for manured and nonmanured soils, but the relationships diverged at higher O-P levels, indicating that one STP cannot be reliably converted to another using a single equation for manured and non-manured soils at environmentally critical P levels (0–100 mg kg-1 O-P). Suggested environmental soil P threshold ranges, in mg P kg-1, were 88–118 for O-P, 138–184 for K1-P, 108–143 for K2-P, 103–137 for K3-P, 96–128 for B1-P, 84–111 for MA-P, 15–20 for W-P, 5–8 for Ca-P and 85–111 for FeO-P. Key words: Phosphorus, soil test phosphorus, manured soils, non-manured soils, environmental threshold


2018 ◽  
Vol 218 ◽  
pp. 158-170 ◽  
Author(s):  
Theresa Zicker ◽  
Sabine von Tucher ◽  
Mareike Kavka ◽  
Bettina Eichler-Löbermann

2016 ◽  
Vol 51 (9) ◽  
pp. 1088-1098 ◽  
Author(s):  
Leandro Bortolon ◽  
Paulo Roberto Ernani ◽  
Elisandra Solange Oliveira Bortolon ◽  
Clesio Gianello ◽  
Rodrigo Gabriel Oliveira de Almeida ◽  
...  

Abstract The objective of this work was to assess the risk of phosphorus losses by runoff through an index based on the degree of P saturation (DPS), in cropland soils of Southern Brazil. Sixty-five highly representative cropland soils from the region were evaluated. Three labile P forms were measured (Mehlich-1, Mehlich-3, and ammonium oxalate), and four P sorption indexes were tested (phosphorus single sorption point and Fe+Al determined with the three extractors). Water-extractable P (WEP) was used as an index of P susceptibility to losses by surface runoff. The DPS was determined from the ratio between labile P and each sorption index. DPS values obtained from the ratio between Mehlich-1 P and the single P sorption point ranged from 1 to 25%, whereas those from Mehlich-1 P and Fe+Al (ammonium oxalate) ranged from 1 to 55%. All DPS types were highly correlated with WEP. From a practical stand point, the DPS obtained with both P and Fe+Al extracted with Mehlich-1 can be used to estimate the risk of P losses by runoff in soils of Southern Brazil.


2018 ◽  
Vol 110 (5) ◽  
pp. 1943-1950
Author(s):  
Xianjun J. Hao ◽  
T.Q. Zhang ◽  
Y.T. Wang ◽  
C.S. Tan ◽  
Z.M. Qi ◽  
...  

2008 ◽  
Vol 16 (4) ◽  
pp. 301 ◽  
Author(s):  
R. UUSITALO ◽  
E. TURTOLA ◽  
J. GRÖNROOS

Soil test phosphorus (P) concentration has a major influence on the dissolved P concentration in runoff from agricultural soils. Thus, trends in soil test P partly determine the development of pollution potential of agricultural activities. We reviewed the changes of soil test P and P balances in Finnish agriculture, and assessed the current setting of P loss potential after two Agri-Environmental Programs. Phosphorus balance of the Finnish agriculture has decreased from +35 kg ha–1 of the 1980’s to about +8 kg P ha–1 today. As a consequence, the 50-yr upward trend in soil test P concentrations has probably levelled out in the late 1990’s, as suggested by sampling of about 1600 fields and by a modelling exercise. For the majority of our agricultural soils, soil test P concentrations are currently at a level at which annual P fertilization is unlikely to give measurable yield responses. Soils that benefit from annual P applications are more often found in farms specialized in cereal production, whereas farms specialized in non-cereal plant production and animal production have higher soil test P concentrations. An imbalance in P cycling between plant (feed) and animal production is obvious, and regional imbalances are a result of concentration of animal farms in some parts of the country. A major concern in future will be the fate of manure P in those regions where animal production intensity is further increasing.;


2003 ◽  
Vol 34 (13-14) ◽  
pp. 1897-1917 ◽  
Author(s):  
Angela M. Ebeling ◽  
Leslie R. Cooperband ◽  
Larry G. Bundy

Sign in / Sign up

Export Citation Format

Share Document