p sorption
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 38)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jianhong Liang ◽  
Liuhuan Chen ◽  
Ding Liu ◽  
Chenxu Yi ◽  
Jing Zhu

Phosphorus (P) is one of the key limiting factors for the growth of forests and their net primary productivity in subtropical forest ecosystems. Phosphorus leaching of the forest soil to the catchment and groundwater in karst region is the main source of water eutrophication. Strong P sorption capacity of minerals is generally assumed to be a key driver of P leaching in subtropical ecosystems which varies among different soil types. Here, we estimated P adsorption capacity of the O/A and AB horizon in both limestone soil and red soil of subtropical forests by fitting the Langmuir and Freundlich isotherm to investigate the potential environmental risks of P. The maximum P sorption capacity ( Q m ), P sorption constant ( K L ), P sorption index (PSI), degree of P saturation (DPS), and maximum buffer capacity (MBC) were calculated. The results indicate that Q m of the O/A horizon in both soils were similar. Comparing these two soils, the red soil had a higher K L and MBC in the AB horizon; Q m of limestone soil was larger but K L was lower, indicating that the adsorption capacity of limestone soil was weaker and MBC was lower. There was no significant difference in PSI between the two soils. The DPS values of both soils were below 1.1%, indicating that P saturation is low in both subtropical forest soils due to the lack of marked anthropogenic disturbance. In the O/A horizon, P saturation associated with available P (DPSM3 and DPSOlsen) and that associated with P in the Fe-Al bound state (DPScitrate) were higher in the red soil than in the limestone soil. DPS did not differ significantly in the AB horizon, except for higher DPSM3 and DPScitrate in the red soil. The findings highlight the influence of the soil types on P adsorption. The P adsorption and buffering of red soils were higher than those of limestone soils, indicating a lower risk of P leaching in red subtropical forest soils.


Author(s):  
Berhanu Dinssa ◽  
Eyasu Elias

<span>One of the most soil fertility management problems for crop production on acidic soils of the Ethiopian highlands is phosphorus fixation. The research was executed to assess the P-sorption capacity and to determine the external P requirement of different acidic soils in the Southwestern highlands of Ethiopia. Phosphorus sorption capacity (Kf) and its relation with selected soil characteristics were assessed for some major agricultural soils in the Ethiopian highlands to answer the questions, ‘What are the amount of P-sorption capacity and external P requirement of Nitisols, Luvisols, Alisols, and Andosols in Ethiopia?’. Twelve surface soil samples (at depth of 0-30 cm) were gathered and the P-sorption capacity was estimated. Phosphorus-sorption data were obtained by equilibrating 1 g of the 12 soil samples with 25 ml of KH<sub>2</sub>PO<sub>4</sub> in 0.01 M CaCl2, having 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, and 330 mg P L<sup>-1</sup> for 24 hours. The data were adjusted to the Freundlich adsorption model and the relationship among P-sorption and soil characteristics was established by correlation analysis.  Clay content and exchangeable acidity, organic matter, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub> oxides have affected phosphorus-sorption at a significance level of (P &lt; 0.05).  Alisols had the highest Kf value (413 mg kg<sup>-1</sup>) but Nitisols had the lowest Kf (280 mg kg<sup>-1</sup>). The external phosphorus fertilizer requirement of the soils was in the order of 25, 30, 32, and 26 mg P kg<sup>-1</sup> for Nitisols, Luvisols, Alisols, and Andosols sequentially. The Kf varies among different soil types of the study area. The magnitude of the soil’s Kf was affected by the pH of the soil, soil OM content, and oxides of Fe and Al. Therefore, knowledge of the soils’ P retention capacity is highly crucial to determine the correct rate of P </span><span>fertilizer</span><span> for crop production.</span>


Author(s):  
Carmo Horta ◽  
Natália Roque

The Mediterranean region offers good weather conditions for outdoor pig production (OPP), which is considered more environmentally friendly than intensive indoor production. However, the continuous input of food and pigs' excreta increases the soil organic matter (SOM) and phosphorus (P), increasing the risk of waterbodies eutrophication. This work aimed at evaluating in OPP areas soil P dynamics and the role of SOM on P sorption and P release. The experiment was done for two years, at an area of 2.8 ha with an animal charge of 9 adults ha-1. Georeferenced soil samples were taken at 0.20 m depth, and a soil P sorption experiment was carried out. At the end of the experiment, for the background value, the levels of SOM increased between 85&ndash;376%, and Olsen P values ranged between -82&ndash;884%. SOM levels above 2% caused a decrease in the binding energy of P sorption according to the linear model b=-15.541SOM+115.20 (p &lt;0.01) as well as a decrease of the soil P sorption capacity Qmax=-41.272SOM+298.37 (p &lt;0.01). To avoid the accumulation of SOM and P preventing hotspots for waterbodies eutrophication, an adequate animal charge together with soil cultivation for pig grazing can be a cost-effective practice.


2021 ◽  
pp. 27-36
Author(s):  
Adams Emomu ◽  
Esohe Ehis-Iyoha ◽  
Emmanuel Ochuko Ufinomue ◽  
Donald Okpo Odidi ◽  
Sandra Amen Ighedosa

To provide information on best model to predict Phosphorus (P) Sorption unto Soils derived from Basement Complex Rock, Alluvium, Coastal Plain Sand and Imo Shale Parent Materials in 3 states of Nigeria. Completely randomized design was used to collect surface soil samples in 3 replications from 4 locations in Nigeria. Samples were collected from Idanre, Koko, NIFOR and Uhonmora in Ondo, Delta and Edo states Nigeria, laboratory analysis was carried out in the Central analytical laboratory of Nigerian Institute for Oil-Palm Research (NIFOR) Benin City, Nigeria between march 2016 and September 2017. Soil samples were equilibrated in 25 ml of 0.01 M CaCl2 containing various concentration of P as KH2PO4  to give 0, 50, 100, 150, 200 and 250 mg/L P for 24 hours (h) at room temperature 25 ± 2oC. 3 drops of CHCl3 was added to inhibit P mineralization. The suspension was shaken for 24 h on a reciprocating mechanical shaker, centrifuged at 7000 rpm After equilibration, decanted and P determined using spectrophotometer. The sorption data were fitted to linear Freundlich and Langmuir sorption isotherm. Considering the Freundlich model, P adsorption capacity (a) and P sorption energy (n) was highest in soils B (1400 mg kg-1) and (2.806 L kg-1) respectively. The Freundlich model fitted better to the data obtained with average root mean square error (RMSE) and R2 value of 0.69 and 0.951 respectively, as against average RMSE and R2 value of 1.60 and 0.883 respectively obtained from Langmuir model. The sorption data fitted well to Freundlich and Langmuir isotherms of which Freundlich Adsorption model was found to be better based on lowest RMSE (0.69) and highest regression (R2 = 0.951) value. Freundlich model should be adopted to determine P sorption characteristics of the soils studied. These predictors, however, need further works to validate reliability.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2465
Author(s):  
Anthony C. Kuster ◽  
Brian J. Huser ◽  
Surapol Padungthon ◽  
Rittirong Junggoth ◽  
Anootnara T. Kuster

Drinking water treatment residuals (DWTRs) generated during drinking water treatment have been proposed for use in lake restoration as a solid-phase sorbent to inactivate phosphorus (P) in lake sediment. However, treatments that minimize leaching of nitrogen (N) and optimize P sorption capacity may be necessary prior to use. This study assessed seven different treatment methods, including washing and heat treatments at different temperatures and with and without oxygen limitation, among two DWTRs from Thailand. Results showed that oxygen-limited heat treatment at 600 °C substantially reduced N leaching (<0.2 mg/kg TKN) while also improving P sorption capacity (increase of 18–32% compared to untreated DWTR) to a maximum of 45.7 mg P/kg. Washing with deionized water reduced N leaching if a sufficient volume was used but did not improve P sorption. Heating at 200 °C with or without the presence of oxygen did not improve N leaching or P sorption. Regression of P sorption parameters from a two-surface Langmuir isotherm against physio-chemical properties indicated that oxalate-extractable (i.e., amorphous) aluminum and iron were significantly associated with total P sorption capacity (R2 = 0.94), but micropores and oxalate-extractable P modulated the P sorption from high-affinity to low-affinity mechanisms. In conclusion, this study confirmed the importance of amorphous aluminum in DWTRs for inactivating P, and the results suggest that high-temperature treatment under oxygen-limited conditions may be the most reliable way to optimize DWTRs for environmental remediation applications.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 714
Author(s):  
Vladimír Frišták ◽  
Martin Pipíška ◽  
Vladimír Turčan ◽  
Stephen M. Bell ◽  
Haywood Dail Laughinghouse ◽  
...  

Elevated or unnatural levels of arsenic (As) and phosphorus (P) concentrations in soils and waterbodies from anthropogenic sources can present significant hazards for both natural ecosystems and human food production. Effective, environmentally friendly, and inexpensive materials, such as biochar, are needed to reduce mobility and bioavailability of As and P. While biochar features several physicochemical properties that make it an ideal contaminant sorbent, certain modifications such as mineral-impregnation can improve sorption efficiencies for targeted compounds. Here, we conducted sorption experiments to investigate and quantify the potential utility of magnesium (Mg) for improving biochar sorption efficiency of P and As. We synthesized a Mg-modified walnut shells-derived biochar and characterized its ability to remove As and P from aqueous solutions, thereby mitigating losses of valuable P when needed while, at the same time, immobilizing hazardous As in ecosystems. SEM-EDX, FTIR and elemental analysis showed morphological and functional changes of biochar and the formation of new Mg-based composites (MgO, MgOHCl) responsible for improved sorption potential capacity by 10 times for As and 20 times for P. Sorption efficiency was attributed to improved AEC, higher SSA, chemical forms of sorbates and new sorption site formations. Synthetized Mg-composite/walnut shell-derived biochar also removed >90% of P from real samples of wastewater, indicating its potential suitability for contaminated waterbody remediation.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 674
Author(s):  
Sílvio Junio Ramos ◽  
Duane Azevedo Pinto ◽  
Rafael Silva Guedes ◽  
Yan Nunes Dias ◽  
Cecílio Fróis Caldeira ◽  
...  

Organic materials, such as biochar and organic compost, can reduce P sorption mechanisms and improve soil fertility, benefiting the reclamation of areas impacted by mining. This study evaluated how the chemical properties of Fe mining soil, the adsorption of P onto this substrate, and the growth of the native plant Dioclea apurensis, were affected by the application of açaí biochar (BC), organic compost (OC), and different P doses. Substrate collected from mining soil piles was incubated for 30 days with BC or OC. Each mining substrate with or without the addition of BC or OC received five doses of P (0, 40, 80, 120, and 240 mg∙kg−1 P). The addition of BC or OC promoted an increase in pH and nutrient availability (P, K, Ca, and B) in Fe mining soil. However, plants grown in the unamended mining soil (W) showed higher growth. The maximum P adsorption capacity decreased as a function of the addition of BC. We conclude that the application of BC reduced P sorption, while the application of either OC or BC altered the chemical properties of the soil and caused contrasting effects on P dynamics in Fe mining soil, and these treatments also affected plant growth.


Author(s):  
Robert Ehi Orhue ◽  
Adams Emomu ◽  
Esohe Obazuaye ◽  
Aimiesomon Michael Erhayimwen ◽  
Ajayi Gboyega Bepo

This study aimed at evaluating phosphorus (P) sorption capacities in Soils overlying basement complex Rock (A), Alluvium (B), coastal plain sand (C) and Imo shale (C) parent materials. Completely randomized design was used to collect soil samples from 5 depths in 3 replications from Idanre, Koko, NIFOR and Uhomora in Nigeria. Samples collected were analyzed in the central analytical laboratory of the Nigerian Institute for Oil palm Research, Benin City, Nigeria between march 2016 and September 2017. 60 soil samples were equilibrated in 25 ml of 0.01 M CaCl2 containing various concentration of P as KH2PO4  to give 0, 50, 100, 150, 200 and 250 mg/L P for 24 hours (h)  at room temperature 25 ± 2 oC. Genstat statistical package was used to calculate Analysis of variance, correlation of Phosphorus sorption index (PSI) with soil properties, coefficient of variation, means separation and Least Significant difference (LSD). The rate and %P adsorption increased with increasing concentration of P added to the soils. The P sorption capacities of the soils considering Freundlich model decreased in the order of D > B > C >A. %P adsorbed was highest in D soils with value of 15.19% for 100 mg/kg P added. The PSI correlated with organic carbon r = -0.58 P ≤ .05 in C soils, r = 0.44 P ≤ .05 in D soils, it also correlated with N r = -0.58 P ≤ .05 in C Soils, K r = 0.57 P ≤ .05, r = 0.49 P ≤ .05 in C and D soils respectively. D soils sorbed more P than other soils hence the D soils will require more P fertilization to attain optimum P concentration in soil solution, however further study is required to determine the form of P sorbed by these parent materials.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 295
Author(s):  
Marina Moura Morales ◽  
Nicholas Brian Comerford ◽  
Maurel Behling ◽  
Daniel Carneiro de Abreu ◽  
Iraê Amaral Guerrini

The phosphorus (P) chemistry of biochar (BC)-amended soils is poorly understood. This statement is based on the lack of published research attempting a comprehensive characterization of biochar’s influence on P sorption. Therefore, this study addressed the kinetic limitations of these processes. This was accomplished using a fast pyrolysis biochar made from a mix of waste materials applied to a highly weathered Latossolo Vermelho distrofico (Oxisol) from São Paulo, Brazil. Standard method (batch method) was used. The sorption kinetic studies indicated that P sorption in both cases, soil (S) and soil-biochar (SBC), had a relatively fast initial reaction between 0 to 5 min. This may have happened because adding biochar to the soil decreased P sorption capacity compared to the mineral soil alone. Presumably, this is a result of: (i) Inorganic phosphorus desorbed from biochar was resorbed onto the mineral soil; (ii) charcoal particles physically covered P sorption locations on soil; or (iii) the pH increased when BC was added SBC and the soil surface became more negatively charged, thus increasing anion repulsion and decreasing P sorption.


Sign in / Sign up

Export Citation Format

Share Document