Ethylene Evolution and Ammonium Accumulation by Tomato Plants after Root-Applied Glufosinate-Ammonium Treatment in the Presence of Ethylene Inhibitors

2005 ◽  
Vol 35 (13-14) ◽  
pp. 1957-1965 ◽  
Author(s):  
Wenqi You ◽  
Allen V. Barker
2002 ◽  
Vol 127 (2) ◽  
pp. 200-204 ◽  
Author(s):  
Wenqi You ◽  
Allen V. Barker

The herbicidal action of foliar applications of glufosinate-ammonium (GLA) is due to toxic accumulation of unassimilated NH4+ in leaves; however, the effects of root-applied GLA on NH4+ accumulation and plant growth are unknown. In a dose-response hydroponics experiment, tomato (Lycopersicon esculentum Mill.) plants were grown in nitrate-based solutions with GLA added at 0, 6, 12, 25, or 50 mg·L-1. To observe plant responses to an exogenous NH4+ source with herbicide-induced responses, plants were grown in an NH4+-based solution without GLA addition. At 6 days after treatment (DAT), GLA in solution at 25 mg·L-1 produced partial leaf wilting, chlorosis, and necrosis of foliage, and at 50 mg·L-1, plants were fully wilted and necrotic. Ammonium (NH4+-N) concentration in shoots at 6 DAT increased from 0 to 6 mg·g-1 fresh weight with increasing GLA in the nutrient solution. Ethylene evolution doubled (from 4 to 8 nL·g-1·h-1, fresh weight) with increases in GLA from 0 to 25 mg·L-1 but declined with apparent plant death with GLA at 50 mg·L-1. Other treatments, including NH4+ nutrition, did not induce toxicity symptoms in leaves or give increases in NH4+ accumulation or ethylene evolution during the 6 days of the experiment. In a time-course experiment, tomato plants treated with GLA at 25 mg·L-1 were chlorotic at 4 DAT. Ethylene evolution (fresh weight basis) rose from an initial rate of 2.6 nL·g-1·h-1 to 8.3 nL·g-1·h-1 after 4 days. At 9 DAT, all plants receiving this treatment died. In the time-course experiment, an exogenous NH4+ treatment caused a slight inhibition in shoot fresh weight relative to NO3- nutrition with no GLA but caused no visible symptoms and only slight enhancements in NH4+ accumulation and ethylene evolution over the 9-day period. Following GLA treatment, NH4+ accumulated in the shoots and increased sharply with time, whereas exogenous NH4+ led to NH4+ accumulation primarily in roots. Results suggest that GLA was absorbed by roots and translocated to shoots, where it initiated accumulation of NH4+ and ethylene evolution as indications of herbicidal action. Chemical name used: glufosinate-ammonium, GLA.


HortScience ◽  
1993 ◽  
Vol 28 (2) ◽  
pp. 109-110 ◽  
Author(s):  
Jinan Feng ◽  
Allen V. Barker

Polyamine accumulation in foliage was assessed in relation to ammonium accumulation and ethylene evolution in tomato (Lycopersicon esculentum Mill.) under nutritional stress. Nutritional stresses were induced in greenhouse-grown plants in quartz sand with an NH4-based solution or with NO3-based solutions without P, K, Ca, or Mg. Plants receiving NH4-based nutrition had higher putrescine and lower spermidine concentrations than plants receiving NO3-based nutrition. Adding AOA (10-5m) to the nutrient solution of plants receiving NH4-based nutrition suppressed putrescine accumulation but had no effect on spermidine; silver thiosulfate (10-5 m) had no effect on polyamine accumulation. Deficiencies had no consistent effect on polyamine accumulation relative to its accumulation under full-nutrition conditions, but adding AOA restricted putrescine and spermidine accumulation in all nutrient-deficient regimes. Foliar spermine accumulation was not affected by nutritional regime. Ammonium-based nutrition resulted in enhanced putrescine and ammonium accumulation and accelerated ethylene evolution rates relative to plants receiving NO3-based nutrition. All nutrient-deficient plants had higher ammonium accumulation, and all but P-deficient plants had higher ethylene evolution than those receiving full NO3-based nutrition. Although some variability occurred among treatments, an association among putrescine accumulation, ammonium accumulation, ethylene evolution. and stress-induced symptoms was apparent. Chemical name used: (aminooxy) acetic acid (AOA).


HortScience ◽  
1992 ◽  
Vol 27 (11) ◽  
pp. 1163b-1163
Author(s):  
Jinan Feng ◽  
Allen V. Barker

Polyamine accumulation is a response of plants to various environmental stresses. Polyamine accumulation was assessed in relation to ammonium accumulation and ethylene evolution in tomato (Lycopersicon esculentum Mill.) under nutritional stress. Nutritional stresses were imparted on plants grown in quartz sand culture under greenhouse conditions with NH4-based modified Hoagland's solution or with NO3-based solutions without P, K, Ca, or Mg. The plants receiving NH4 nutrition were grown with or without 10-5 M (aminooxy)acetic acid (AOA) or 10-5 M silver thiosulfate (STS). Plants on nutrient deficient solution were grown with or without the AOA. When plants appeared with toxic or deficient symptoms, the new fully expanded leaves were collected and extracted by 5% perchloric acid for polyamine analyzes by HPLC. Plants receiving NH4-based nutrition had high putrescine and low spermidine concentrations. High spermidine and low putrescine concentrations occurred in plants receiving complete NO3-based nutrition. For plants receiving NH4-based nutrition, application of AOA suppressed accumulation of putrescine but had no effect on spermidine, and STS had no effect on polyamine accumulation. For plants receiving NO3-based nutrition without P, K, Ca, or Mg, the application of AOA restricted accumulation of putrescine and spermidine. High putrescine concentration was accompanied by high ammonium accumulation, high ethylene evolution, and stressinduced symptoms, indicating an association between polyamine accumulation and other stress-related phenomena.


HortScience ◽  
1990 ◽  
Vol 25 (6) ◽  
pp. 625d-625 ◽  
Author(s):  
Allen V. Barker

Studies were made of ethylene evolution by `Heinz 1350' tomato fruits from plants that had received nitrogen nutrition from ammonium or nitrate salts in soil-based media. Fruits of plants receiving ammonium nutrition had higher ammonium concentrations, higher occurrences of blossom-end rot, and higher rates of ethylene evolution than fruits from nitrate-grown plants. Fruits showing blossom-end rot had higher ammonium concentrations and higher rates of ethylene evolution than normal fruits only if the plants received ammonium nutrition. Ethylene evolution increased as fruits from nitrate-grown plants ripened but without a concurrent increase in ammonium concentrations in the fruits. Ammonium accumulation in fruits apparently induces blossom-end rot and enhances ethylene evolution, but ammonium accumulation does not appear to be a naturally occurring phenomenon in ripening fruits or in fruits that have blossom-end rot arising from other casual factors.


1994 ◽  
Vol 119 (5) ◽  
pp. 956-963 ◽  
Author(s):  
Hisashi Yamada ◽  
George C. Martin

Adding Al2O3 to 8-hydroxyquinoline citrate (8-HQC) solution did not alter the sensitivity of the leaf abscission zone to external ethylene. Exogenous ethylene at 791 nl·liter-1 for 72 to 120 hours and at 193 nl·liter-1 for 120 hours induced leaf abscission, whereas no leaf abscission occurred at 47 nl·liter-1 for 72 to 120 hours. Ethylene at 791 nl·liter-1 for 72 to 120 hours increased ethylene evolution, but the amount of ethylene evolved from the explants does not seem to be enough to induce leaf abscission. Three different ethylene inhibitors—aminooxyacetic acid (AOA), CoCl2, and aminoethoxyvinylglycine (AVG)—were used to determine whether P-induced leaf abscission was mediated through elevated ethylene evolution. Although AOA and CoCl2 failed to inhibit ethylene evolution from the explants stem-fed with NaH2PO4, AVG inhibited ethylene evolution. Each inhibitor, except 5 mm CoCl2, promoted leaf abscission when administered alone or with P. Our results reveal that P-induced olive leaf abscission may occur without elevated ethylene evolution. At 40 or 75 mm NaH2PO4, abscission did not occur until explants were removed from N2 and placed in ambient air.


Sign in / Sign up

Export Citation Format

Share Document