HOT TEST OF TRIALKYL PHOSPHINE OXIDE (TRPO) FOR REMOVING ACTINIDES FROM HIGHLY SALINE HIGH-LEVEL LIQUID WASTE (HLLW)

2001 ◽  
Vol 19 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Wang Jianchen ◽  
Song Chongli
2001 ◽  
Vol 89 (3) ◽  
Author(s):  
W. Jianchen ◽  
S. Chongli

The crown ether strontium extraction(CESE) process for partitioning strontium from HLLW was studied. A hot test was carried out in a counter current mode with genuine HLLW by using a miniature centrifugal contactor set. 0.1 mol/L DCH18C6 in 1-octanol was used as extractant. The feed solution was the HLLW raffinate of TRPO process after removing TRU elements. Acidity of the feed was 1.45 mol/L HNO


2014 ◽  
Vol 278 ◽  
pp. 566-571 ◽  
Author(s):  
Wuhua Duan ◽  
Jing Chen ◽  
Jianchen Wang ◽  
Shuwei Wang ◽  
Xiaogui Feng ◽  
...  

2015 ◽  
Vol 30 (4) ◽  
pp. 311-317
Author(s):  
Wu Duan ◽  
Jing Chen ◽  
Jian Wang ◽  
Shu Wang ◽  
Xing Wang

The partitioning and transmutation strategy has increasingly attracted interest for the safe treatment and disposal of high level liquid waste, in which the partitioning of high level liquid waste is one of the critical technical issues. An improved total partitioning process, including a tri-alkylphosphine oxide process for the removal of actinides, a crown ether strontium extraction process for the removal of strontium, and a calixcrown ether cesium extraction process for the removal of cesium, has been developed to treat Chinese high level liquid waste. A test system containing 72-stage 10-mm-diam annular centrifugal contactors, a remote sampling system, a rotor speed acquisition-monitoring system, a feeding system, and a video camera-surveillance system was successfully developed to carry out the hot test for verifying the improved total partitioning process. The test system has been successfully used in a 160 hour hot test using genuine high level liquid waste. During the hot test, the test system was stable, which demonstrated it was reliable for the hot test of the high level liquid waste partitioning.


Author(s):  
R. Do Quang ◽  
V. Petitjean ◽  
F. Hollebecque ◽  
O. Pinet ◽  
T. Flament ◽  
...  

The performance of the vitrification process currently used in the La Hague commercial reprocessing plants has been continuously improved during more than ten years of operation. In parallel COGEMA (industrial Operator), the French Atomic Energy Commission (CEA) and SGN (respectively COGEMA’s R&D provider and Engineering) have developed the cold crucible melter vitrification technology to obtain greater operating flexibility, increased plant availability and further reduction of secondary waste generated during operations. The cold crucible is a compact water-cooled melter in which the radioactive waste and the glass additives are melted by direct high frequency induction. The cooling of the melter produces a soldified glass layer that protects the melter’s inner wall from corrosion. Because the heat is transferred directly to the melt, high operating temperatures can be achieved with no impact on the melter itself. COGEMA plans to implement the cold crucible technology to vitrify high level liquid waste from reprocessed spent U-Mo-Sn-Al fuel (used in gas cooled reactor). The cold crucible was selected for the vitrification of this particularly hard-to-process waste stream because it could not be reasonably processed in the standard hot induction melters currently used at the La Hague vitrification facilities: the waste has a high molybdenum content which makes it very corrosive and also requires a special high temperature glass formulation to obtain sufficiently high waste loading factors (12% in molybednum). A special glass formulation has been developed by the CEA and has been qualified through lab and pilot testing to meet standard waste acceptance criteria for final disposal of the U-Mo waste. The process and the associated technologies have been also being qualified on a full-scale prototype at the CEA pilot facility in Marcoule. Engineering study has been integrated in parallel in order to take into account that the Cold Crucible should be installed remotely in one of the R7 vitrification cell. This paper will present the results obtained in the framework of these qualification programs.


Author(s):  
Meng Wei ◽  
Xuegang Liu ◽  
Jing Chen

To reduce the long-term risk of the high-level liquid waste (HLLW) and the waste disposal cost, transuranium (TRU) elements should be removed from HLLW. A so-called TRPO process has been developed by Chinese scientists to partition HLLW. In this process, the extractant, trialkyl phosphine oxide (TRPO), is able to extract TRU elements into organic phase completely, which makes the treatment and disposal of raffinate HLLW much easier. However, the treatment of extracted TRU elements in organic phase, in return, becomes new troublesome issue. Generally, there are three promising ways to treat the extracted TRU elements: (1)transmutation; (2)conditioning; (3)recycling U+Pu in Purex-TRPO Integrated Process. In any of the three ways, the back extraction agents and processes play significant roles. In this paper, the investigations on back extraction agents for TRU elements, such as TTHA, DTPA, AHA, HEDPA, DOGA, and carbonates are introduced. The corresponding back extraction processes and experimental results are reviewed.


Sign in / Sign up

Export Citation Format

Share Document