scholarly journals Lithium ion inhibits nerve growth factor-induced neurite outgrowth and phosphorylation of nerve growth factor-modulated microtubule-associated proteins.

1985 ◽  
Vol 101 (3) ◽  
pp. 862-870 ◽  
Author(s):  
D E Burstein ◽  
P J Seeley ◽  
L A Greene

LiCl (2.5-20 mM) reversibly suppressed nerve growth factor (NGF)-induced neurite outgrowth by cultured rat PC 12 pheochromocytoma cells. Similar concentrations of LiCl also reversibly blocked NGF-dependent regeneration of neurites by PC12 cells that had been primed by long-term pre-exposure to NGF and by cultured newborn mouse sympathetic neurons. In contrast, transcription-dependent responses of PC12 cells to NGF such as priming and induction of the NGF-inducible large external glycoprotein, occurred despite the presence of Li+. SDS PAGE analysis of total cellular phosphoproteins (labeled by 2-h exposure to 32P-orthophosphate) from neurite-bearing primed PC12 cells revealed that Li+ reversibly inhibited the phosphorylation of a band of Mr 64,000 that was barely detectable in NGF-untreated PC12 cells. However, Li+ did not appear to affect the labeling of other phosphoproteins in either NGF-primed or untreated PC12 cultures, nor did it affect the rapid increase in phosphorylation of several proteins that occurs when NGF is first added to unprimed cultures. Several criteria indicated that the NGF-inducible phosphoprotein of Mr 64,000 is a microtubule-associated protein (MAP). Of the NGF-inducible phosphorylated MAPs that have been detected in PC12 cells (Mr 64,000, 72,000, 80,000, and 320,000), several (Mr 64,000, 72,000, and 80,000) were found to be substantially less phosphorylated in the presence of Li+. Neither a phorbol ester tumor promotor nor permeant cAMP analogs reversed the inhibitory effects of Li+ on neurite outgrowth or on phosphorylation of the component of Mr 64,000. Microtubules are a major and required constituent of neurites, and MAPs may regulate the assembly and stability of neuritic microtubules. The observation that Li+ selectively inhibits NGF-induced neurite outgrowth and MAP phosphorylation suggests a possible causal relationship between these two events.

1985 ◽  
Vol 101 (5) ◽  
pp. 1799-1807 ◽  
Author(s):  
D G Drubin ◽  
S C Feinstein ◽  
E M Shooter ◽  
M W Kirschner

Nerve growth factor (NGF) regulates the microtubule-dependent extension and maintenance of axons by some peripheral neurons. We show here that one effect of NGF is to promote microtubule assembly during neurite outgrowth in PC12 cells. Though NGF causes an increase in total tubulin levels, the formation of neurites and the assembly of microtubules follow a time course completely distinct from that of the tubulin induction. The increases in microtubule mass and neurite extension closely parallel 10- and 20-fold inductions of tau and MAP1, proteins shown previously to promote microtubule assembly in vitro. When NGF is removed from PC12 cells, neurites disappear, microtubule mass decreases, and both microtubule-associated proteins return to undifferentiated levels. These data suggest that the induction of tau and MAP1 in response to NGF promotes microtubule assembly and that these factors are therefore key regulators of neurite outgrowth.


1986 ◽  
Vol 103 (2) ◽  
pp. 545-557 ◽  
Author(s):  
M M Black ◽  
J M Aletta ◽  
L A Greene

We have used the nerve growth factor (NGF)-responsive line of PC12 pheochromocytoma cells as a model system to study microtubule specializations associated with neurite outgrowth. PC12 cells treated with NGF cease proliferating and extend neurites. Long-term NGF treatment results in a two- to threefold increase in the proportion of total cellular tubulin that is polymerized in PC12 cells. The increase in this parameter first becomes apparent at 2-4 d with NGF and increases steadily thereafter. Several changes in microtubule-associated proteins (MAPs) of PC12 cells also occur after exposure to NGF. In immunoprecipitation assays, we observed the levels of MAP-2 to increase by at least several-fold after treatment with NGF. We also found that the compositions of three MAP classes with apparent Mr of 64K, 67K, and 80K are altered by NGF treatment. These MAPs, recently designated "chartins," are biochemically and immunologically distinct from the similarly-sized tau MAPs (Peng et al., 1985 Brain Res. 361: 200; Magendantz and Solomon, 1985 Proc. Natl. Acad. Sci. 82: 6581). In two-dimensional isoelectric focusing x SDS polyacrylamide gels, each chartin MAP class resolves into a set of proteins of similar apparent Mr but distinct pI. Peptide mapping analyses confirm that the isoelectric variants comprising each chartin MAP class are closely related in primary structure. Several striking differences in the composition of the chartin MAPs of PC12 cells grown with or without NGF were consistently observed. In particular, following longterm NGF treatment, the abundances of the more acidic variants of each chartin MAP class were markedly enhanced relative to the more basic members. This occurs without substantial changes in the abundance of each MAP class as a whole relative to total cell protein. The combined results of in vivo phosphorylation and peptide mapping experiments indicate that the NGF-inducible chartin MAP species are not primary translation products, but are generated posttranslationally, apparently by differential phosphorylation of other chartin MAPs. These observations suggest that NGF treatment of PC12 cells leads to changes in the posttranslational processing of the chartin MAPs. The time course of these changes closely resembles that for the increase in the proportion of cellular tubulin that is polymerized and for neurite outgrowth. One of the important events in the growth and stabilization of neurites appears to be the formation of microtubule bundles that extend from the cell body to the tips of the neurites.(ABSTRACT TRUNCATED AT 400 WORDS)


1988 ◽  
Vol 107 (2) ◽  
pp. 643-650 ◽  
Author(s):  
B Brugg ◽  
A Matus

Microtubule-associated proteins (MAPs) are believed to play an important role in regulating the growth of neuronal processes. The nerve growth factor-induced differentiation of PC12 pheochromocytoma cells is a widely used tissue culture model for studying this mechanism. We have found that contrary to previous suggestions, the major MAPs of adult brain, MAP1 and MAP2, are minor components of PC12 cells. Instead two novel MAPs characteristic of developing brain, MAP3 and MAP5, are present and increase more than 10-fold after nerve growth factor treatment; the timing of these increases coinciding with the bundling of microtubules and neurite outgrowth. Immunocytochemical staining showed that MAP3 and MAP5 are initially distributed throughout the cytoplasm. Subsequently MAP5 becomes associated with microtubules in both neurites and growth cones but MAP3 distribution remained diffuse. Thus MAP3 and MAP5, which are characteristic of developing neurons in the juvenile brain, are also induced in PC12 cells during neurite outgrowth in culture. In contrast MAP1, which is characteristic of mature neurons, does not increase during PC12 cell differentiation. These results provide evidence that one set of MAPs is expressed during neurite outgrowth and a different set during the maintenance of neuronal form. It also appears that the PC12 system is an appropriate model for studying the active neurite growth phase of neuronal differentiation but not for neuronal maturation.


1992 ◽  
Vol 119 (6) ◽  
pp. 1669-1680 ◽  
Author(s):  
P W Mesner ◽  
T R Winters ◽  
S H Green

Previous studies have shown that in neuronal cells the developmental phenomenon of programmed cell death is an active process, requiring synthesis of both RNA and protein. This presumably reflects a requirement for novel gene products to effect cell death. It is shown here that the death of nerve growth factor-deprived neuronal PC12 cells occurs at the same rate as that of rat sympathetic neurons and, like rat sympathetic neurons, involves new transcription and translation. In nerve growth factor-deprived neuronal PC12 cells, a decline in metabolic activity, assessed by uptake of [3H]2-deoxyglucose, precedes the decline in cell number, assessed by counts of trypan blue-excluding cells. Both declines are prevented by actinomycin D and anisomycin. In contrast, the death of nonneuronal (chromaffin-like) PC12 cells is not inhibited by transcription or translation inhibitors and thus does not require new protein synthesis. DNA fragmentation by internucleosomal cleavage does not appear to be a consistent or significant aspect of cell death in sympathetic neurons, neuronal PC12 cells, or nonneuronal PC12 cells, notwithstanding that the putative nuclease inhibitor aurintricarboxylic acid protects sympathetic neurons, as well as neuronal and nonneuronal PC12 cells, from death induced by trophic factor removal. Both phenotypic classes of PC12 cells respond to aurintricarboxylic acid with similar dose-response characteristics. Our results indicate that programmed cell death in neuronal PC12 cells, but not in nonneuronal PC12 cells, resembles programmed cell death in sympathetic neurons in significant mechanistic aspects: time course, role of new protein synthesis, and lack of a significant degree of DNA fragmentation.


FEBS Letters ◽  
2010 ◽  
Vol 584 (13) ◽  
pp. 2821-2826 ◽  
Author(s):  
Toshiya Sugino ◽  
Mitsuhisa Maruyama ◽  
Masaya Tanno ◽  
Atsushi Kuno ◽  
Kiyohiro Houkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document