scholarly journals Identification of intermediates in the pathway of protein import into chloroplasts and their localization to envelope contact sites.

1993 ◽  
Vol 120 (1) ◽  
pp. 103-115 ◽  
Author(s):  
D J Schnell ◽  
G Blobel

We have used a hybrid precursor protein to study the pathway of protein import into chloroplasts. This hybrid (pS/protA) consists of the precursor to the small subunit of Rubisco (pS) fused to the IgG binding domains of staphylococcal protein A. The pS/protA is efficiently imported into isolated chloroplasts and is processed to its mature form (S/protA). In addition to the mature stromal form, two intermediates in the pathway of pS/protA import were identified at early time points in the import reaction. The first intermediate represents unprocessed pS/protA bound to the outer surface of the chloroplast envelope and is analogous to a previously characterized form of pS that is specifically bound to the chloroplast surface and can be subsequently translocated in the stroma (Cline, K., M. Werner-Washburne, T. H. Lubben, and K. Keegstra. 1985. J. Biol. Chem. 260:3691-3696.) The second intermediate represents a partially translocated form of the precursor that remains associated with the envelope membrane. This form is processed to mature S/protA, but remains susceptible to exogenously added protease in intact chloroplasts. We conclude that the envelope associated S/protA is spanning both the outer and inner chloroplast membranes en route to the stroma. Biochemical and immunochemical localization of the two translocation intermediates indicates that both forms are exposed at the surface of the outer membrane at sites where the outer and inner membrane are closely apposed. These contact zones appear to be organized in a reticular network on the outer envelope. We propose a model for protein import into chloroplasts that has as its central features two distinct protein conducting channels in the outer and inner envelope membranes, each gated open by a distinct subdomain of the pS signal sequence.

Gene ◽  
1994 ◽  
Vol 151 (1-2) ◽  
pp. 45-51 ◽  
Author(s):  
Ashima Kushwaha ◽  
Partha Sarathi Chowdhury ◽  
Kajal Arora ◽  
Smita Abrol ◽  
Vijay K. Chaudhary

1986 ◽  
Vol 156 (3) ◽  
pp. 637-643 ◽  
Author(s):  
Tomas MOKS ◽  
Lars ABRAHMSEN ◽  
Bjorn NILSSON ◽  
Ulf HELLMAN ◽  
John SJOQUIST ◽  
...  

2000 ◽  
Vol 28 (4) ◽  
pp. 485-491 ◽  
Author(s):  
K. Chen ◽  
X. Chen ◽  
D. J. Schnell

The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toe apparatus) and inner (Tic apparatus) envelope membranes.


1998 ◽  
Vol 10 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Nicola L. Brown ◽  
Stephen P. Bottomley ◽  
Michael D. Scawen ◽  
Michael G. Gore

1996 ◽  
Vol 134 (2) ◽  
pp. 315-327 ◽  
Author(s):  
Y Ma ◽  
A Kouranov ◽  
S E LaSala ◽  
D J Schnell

The interactions of precursor proteins with components of the chloroplast envelope were investigated during the early stages of protein import using a chemical cross-linking strategy. In the absence of energy, two components of the outer envelope import machinery, IAP86 and IAP75, cross-linked to the transit sequence of the precursor to the small subunit of ribulose-1, 5-bisphosphate carboxylase (pS) in a precursor binding assay. In the presence of concentrations of ATP or GTP that support maximal precursor binding to the envelope, cross-linking to the transit sequence occurred predominantly with IAP75 and a previously unidentified 21-kD polypeptide of the inner membrane, indicating that the transit sequence had inserted across the outer membrane. Cross-linking of envelope components to sequences in the mature portion of a second precursor, preferredoxin, was detected in the presence of ATP or GTP, suggesting that sequences distant from the transit sequence were brought into the vicinity of the outer membrane under these conditions. IAP75 and a third import component, IAP34, were coimmunoprecipitated with IAP86 antibodies from solubilized envelope membranes, indicating that these three proteins form a stable complex in the outer membrane. On the basis of these observations, we propose that IAP86 and IAP75 act as components of a multisubunit complex to mediate energy-independent recognition of the transit sequence and subsequent nucleoside triphosphate-induced insertion of the transit sequence across the outer membrane.


Sign in / Sign up

Export Citation Format

Share Document