scholarly journals Intramitochondrial Location and Dynamics of Crithidia fasciculata Kinetoplast Minicircle Replication Intermediates

2001 ◽  
Vol 153 (4) ◽  
pp. 735-744 ◽  
Author(s):  
Mark E. Drew ◽  
Paul T. Englund

Kinetoplast DNA, the mitochondrial DNA of Crithidia fasciculata, is organized into a network containing 5,000 topologically interlocked minicircles. This network, situated within the mitochondrial matrix, is condensed into a disk-shaped structure located near the basal body of the flagellum. Fluorescence in situ hybridization revealed that before their replication, minicircles are released vectorially from the network face nearest the flagellum. Replication initiates in the zone between the flagellar face of the disk and the mitochondrial membrane (we term this region the kinetoflagellar zone [KFZ]). The replicating minicircles then move to two antipodal sites that flank the disk-shaped network. In later stages of replication, the number of free minicircles increases, accumulating transiently in the KFZ. The final replication events, including primer removal, repair of many of the gaps, and reattachment of the progeny minicircles to the network periphery, are thought to take place within the antipodal sites.

1994 ◽  
Vol 126 (3) ◽  
pp. 631-639 ◽  
Author(s):  
M L Ferguson ◽  
A F Torri ◽  
D Pérez-Morga ◽  
D C Ward ◽  
P T Englund

Kinetoplast DNA, the mitochondrial DNA of trypanosomatid parasites, is a network containing several thousand minicircles and a few dozen maxicircles. We compared kinetoplast DNA replication in Trypanosoma brucei and Crithidia fasciculata using fluorescence in situ hybridization and electron microscopy of isolated networks. One difference is in the location of maxicircles in situ. In C. fasciculata, maxicircles are concentrated in discrete foci embedded in the kinetoplast disk; during replication the foci increase in number but remain scattered throughout the disk. In contrast, T. brucei maxicircles generally fill the entire disk. Unlike those in C. fasciculata, T. brucei maxicircles become highly concentrated in the central region of the kinetoplast after replication; then during segregation they redistribute throughout the daughter kinetoplasts. T. brucei and C. fasciculata also differ in the pattern of attachment of newly synthesized minicircles to the network. In C. fasciculata it was known that minicircles are attached at two antipodal sites but subsequently are found uniformly distributed around the network periphery, possibly due to a relative movement of the kinetoplast disk and two protein complexes responsible for minicircle synthesis and attachment. In T. brucei, minicircles appear to be attached at two antipodal sites but then remain concentrated in these two regions. Therefore, the relative movement of the kinetoplast and the two protein complexes may not occur in T. brucei.


2006 ◽  
Vol 175 (4S) ◽  
pp. 287-288 ◽  
Author(s):  
Juliann M. Dziubinski ◽  
Michael F. Sarosdy ◽  
Paul R. Kahn ◽  
Mark D. Ziffer ◽  
William R. Love ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 156-156
Author(s):  
Chandler D. Dora ◽  
Yasushi Kondo ◽  
Fusheng X. Lan ◽  
Jeffrey M. Slezak ◽  
Erik J. Bergstralh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document