scholarly journals Piecing together nuclear pore complex assembly during interphase

2009 ◽  
Vol 185 (3) ◽  
pp. 377-379 ◽  
Author(s):  
Michael Rexach

All nucleocytoplasmic traffic of macromolecules occurs through nuclear pore complexes (NPCs), which function as stents in the nuclear envelope to keep nuclear pores open but gated. Three studies in this issue (Flemming, D., P. Sarges, P. Stelter, A. Hellwig, B. Böttcher, and E. Hurt. 2009. J. Cell Biol. 185:387–395; Makio, T., L.H. Stanton, C.-C. Lin, D.S. Goldfarb, K. Weis, and R.W. Wozniak. 2009. J. Cell Biol. 185:459–491; Onishchenko, E., L.H. Stanton, A.S. Madrid, T. Kieselbach, and K. Weis. 2009. J. Cell Biol. 185:475–491) further our understanding of the NPC assembly process by reporting what happens when the supply lines of key proteins that provide a foundation for building these marvelous supramolecular structures are disrupted.

2014 ◽  
Vol 395 (5) ◽  
pp. 515-528 ◽  
Author(s):  
Benjamin Vollmer ◽  
Wolfram Antonin

Abstract Nuclear pore complexes mediate the transport between the cell nucleoplasm and cytoplasm. These 125 MDa structures are among the largest assemblies found in eukaryotes, built from proteins organized in distinct subcomplexes that act as building blocks during nuclear pore complex biogenesis. In this review, we focus on one of these subcomplexes, the Nup93 complex in metazoa and its yeast counterpart, the Nic96 complex. We discuss its essential function in nuclear pore complex assembly as a linker between the nuclear membrane and the central part of the pore and its various roles in nuclear transport processes and beyond.


2009 ◽  
Vol 20 (2) ◽  
pp. 616-630 ◽  
Author(s):  
Hui-Lin Liu ◽  
Colin P.C. De Souza ◽  
Aysha H. Osmani ◽  
Stephen A. Osmani

In Aspergillus nidulans nuclear pore complexes (NPCs) undergo partial mitotic disassembly such that 12 NPC proteins (Nups) form a core structure anchored across the nuclear envelope (NE). To investigate how the NPC core is maintained, we affinity purified the major core An-Nup84-120 complex and identified two new fungal Nups, An-Nup37 and An-ELYS, previously thought to be vertebrate specific. During mitosis the An-Nup84-120 complex locates to the NE and spindle pole bodies but, unlike vertebrate cells, does not concentrate at kinetochores. We find that mutants lacking individual An-Nup84-120 components are sensitive to the membrane destabilizer benzyl alcohol (BA) and high temperature. Although such mutants display no defects in mitotic spindle formation, they undergo mitotic specific disassembly of the NPC core and transient aggregation of the mitotic NE, suggesting the An-Nup84-120 complex might function with membrane. Supporting this, we show cells devoid of all known fungal transmembrane Nups (An-Ndc1, An-Pom152, and An-Pom34) are viable but that An-ndc1 deletion combined with deletion of individual An-Nup84-120 components is either lethal or causes sensitivity to treatments expected to destabilize membrane. Therefore, the An-Nup84-120 complex performs roles, perhaps at the NPC membrane as proposed previously, that become essential without the An-Ndc1 transmembrane Nup.


1997 ◽  
Vol 110 (4) ◽  
pp. 409-420 ◽  
Author(s):  
M.W. Goldberg ◽  
C. Wiese ◽  
T.D. Allen ◽  
K.L. Wilson

We used field emission in-lens scanning electron microscopy to examine newly-assembled, growing nuclear envelopes in Xenopus egg extracts. Scattered among nuclear pore complexes were rare ‘dimples’ (outer membrane depressions, 5–35 nm diameter), more abundant holes (pores) with a variety of edge geometries (35–45 nm diameter; 3.3% of structures), pores containing one to eight triangular ‘star-ring’ subunits (2.1% of total), and more complicated structures. Neither mature complexes, nor these novel structures, formed when wheat germ agglutinin (which binds O-glycosylated nucleoporins) was added at high concentrations (>500 microg/ml) directly to the assembly reaction; low concentrations (10 microg/ml) had no effect. However at intermediate concentrations (50–100 microg/ml), wheat germ agglutinin caused a dramatic, sugar-reversible accumulation of ‘empty’ pores, and other structures; this effect correlated with the lectin-induced precipitation of a variable proportion of each major Xenopus wheat-germ-agglutinin-binding nucleoporin. Another inhibitor, dibromo-BAPTA (5,5′-dibromo-1,2-bis[o-aminophenoxylethane-N,N,N′,N′-tetraacetic acid), had different effects depending on its time of addition to the assembly reaction. When 1 mM dibromo-BAPTA was added at time zero, no pore-related structures formed. However, when dibromo-BAPTA was added to growing nuclei 40–45 minutes after initiating assembly, star-rings and other structures accumulated, suggesting that dibromo-BAPTA can inhibit multiple stages in pore complex assembly. We propose that assembly begins with the formation and stabilization of a hole (pore) through the nuclear envelope, and that dimples, pores, star-rings, and thin rings are structural intermediates in nuclear pore complex assembly.


2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Banafsheh Golchoubian ◽  
Andreas Brunner ◽  
Helena Bragulat-Teixidor ◽  
Annett Neuner ◽  
Busra A. Akarlar ◽  
...  

Nuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs form within the closed nuclear envelope during interphase or assemble concomitantly with nuclear envelope reformation in late stages of mitosis. Both interphase and mitotic NPC biogenesis require coordination of protein complex assembly and membrane deformation. During early stages of mitotic NPC assembly, a seed for new NPCs is established on chromatin, yet the factors connecting the NPC seed to the membrane of the forming nuclear envelope are unknown. Here, we report that the reticulon homology domain protein REEP4 not only localizes to high-curvature membrane of the cytoplasmic endoplasmic reticulum but is also recruited to the inner nuclear membrane by the NPC biogenesis factor ELYS. This ELYS-recruited pool of REEP4 promotes NPC assembly and appears to be particularly important for NPC formation during mitosis. These findings suggest a role for REEP4 in coordinating nuclear envelope reformation with mitotic NPC biogenesis.


2020 ◽  
Vol 21 (24) ◽  
pp. 9475
Author(s):  
Yuri Y. Shevelyov

For a long time, the nuclear lamina was thought to be the sole scaffold for the attachment of chromosomes to the nuclear envelope (NE) in metazoans. However, accumulating evidence indicates that nuclear pore complexes (NPCs) comprised of nucleoporins (Nups) participate in this process as well. One of the Nups, Elys, initiates NPC reassembly at the end of mitosis. Elys directly binds the decondensing chromatin and interacts with the Nup107–160 subcomplex of NPCs, thus serving as a seeding point for the subsequent recruitment of other NPC subcomplexes and connecting chromatin with the re-forming NE. Recent studies also uncovered the important functions of Elys during interphase where it interacts with chromatin and affects its compactness. Therefore, Elys seems to be one of the key Nups regulating chromatin organization. This review summarizes the current state of our knowledge about the participation of Elys in the post-mitotic NPC reassembly as well as the role that Elys and other Nups play in the maintenance of genome architecture.


2008 ◽  
Vol 19 (3) ◽  
pp. 1230-1240 ◽  
Author(s):  
Ulrike Theisen ◽  
Anne Straube ◽  
Gero Steinberg

Mitosis in animals starts with the disassembly of the nuclear pore complexes and the breakdown of the nuclear envelope. In contrast to many fungi, the corn smut fungus Ustilago maydis also removes the nuclear envelope. Here, we report on the dynamic behavior of the nucleoporins Nup214, Pom152, Nup133, and Nup107 in this “open” fungal mitosis. In prophase, the nuclear pore complexes disassembled and Nup214 and Pom152 dispersed in the cytoplasm and in the endoplasmic reticulum, respectively. Nup107 and Nup133 initially spread throughout the cytoplasm, but in metaphase and early anaphase occurred on the chromosomes. In anaphase, the Nup107-subcomplex redistributed to the edge of the chromosome masses, where the new envelope was reconstituted. Subsequently, Nup214 and Pom152 are recruited to the nuclear pores and protein import starts. Recruitment of nucleoporins and protein import reached a steady state in G2 phase. Formation of the nuclear envelope and assembly of nuclear pores occurred in the absence of microtubules or F-actin, but not if both were disrupted. Thus, the basic principles of nuclear pore complex dynamics seem to be conserved in organisms displaying open mitosis.


2017 ◽  
Vol 216 (10) ◽  
pp. 3145-3159 ◽  
Author(s):  
Diego L. Lapetina ◽  
Christopher Ptak ◽  
Ulyss K. Roesner ◽  
Richard W. Wozniak

Interactions occurring at the nuclear envelope (NE)–chromatin interface influence both NE structure and chromatin organization. Insights into the functions of NE–chromatin interactions have come from the study of yeast subtelomeric chromatin and its association with the NE, including the identification of various proteins necessary for tethering subtelomeric chromatin to the NE and the silencing of resident genes. Here we show that four of these proteins—the silencing factor Sir4, NE-associated Esc1, the SUMO E3 ligase Siz2, and the nuclear pore complex (NPC) protein Nup170—physically and functionally interact with one another and a subset of NPC components (nucleoporins or Nups). Importantly, this group of Nups is largely restricted to members of the inner and outer NPC rings, but it lacks numerous others including cytoplasmically and nucleoplasmically positioned Nups. We propose that this Sir4-associated Nup complex is distinct from holo-NPCs and that it plays a role in subtelomeric chromatin organization and NE tethering.


2001 ◽  
Vol 154 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Susan K. Lyman ◽  
Larry Gerace

In vivo studies on the dynamics of the nuclear pore complex (NPC) in yeast suggested that NPCs are highly mobile in the nuclear envelope. However, new evidence indicates that in mammalian cells NPCs are stably attached to a flexible lamina framework, but a peripheral component can exchange rapidly with an intranuclear pool.


Author(s):  
Banafsheh Golchoubian ◽  
Andreas Brunner ◽  
Helena Bragulat-Teixidor ◽  
Busra A. Akarlar ◽  
Nurhan Ozlu ◽  
...  

AbstractNuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs assemble either into the closed nuclear envelope during interphase or concomitantly with nuclear envelope reformation during anaphase. Both, interphase and post-mitotic NPC biogenesis require local deformation of membrane. Yet, the factors that control proper membrane remodeling for post-mitotic NPC assembly are unknown. Here, we report that the reticulon homology domain-protein REEP4 localizes not only to high-curvature membrane of the cytoplasmic endoplasmic reticulum (ER) but also to the inner nuclear membrane (INM). We show that REEP4 is recruited to the INM by the NPC biogenesis factor ELYS and promotes NPC assembly. REEP4 contributes mainly to anaphase NPC assembly, suggesting that REEP4 has an unexpected role in coordinating nuclear envelope reformation with post-mitotic NPC biogenesis.


2016 ◽  
Author(s):  
Brant M. Webster ◽  
David J. Thaller ◽  
Jens Jäeger ◽  
Sarah E. Ochmann ◽  
C. Patrick Lusk

AbstractMechanisms that ensure the integrity of the nuclear envelope rely on membrane remodeling proteins like the ESCRTs and the AAA ATPase Vps4, which help seal the nuclear envelope at the end of mitosis and prevent the formation of defective nuclear pore complexes (NPCs). Here, we show that the integral inner nuclear membrane proteins Heh1 and Heh2 directly bind the ESCRT-III, Snf7, and the ESCRT-II/III chimera, Chm7, in their ‘open’ forms. Moreover, Heh1 is required for Chm7-recruitment to the nuclear envelope. As Chm7 accumulates on the nuclear envelope upon blocks to NPC assembly, but not to nuclear transport, interactions between ESCRTs and the Heh proteins might form a biochemically distinct nuclear envelope subdomain that delimits regions of assembling NPCs. Interestingly, deletion of CHM7 suppresses the formation of the storage of improperly assembled NPC compartment prevalent in vps4Δ strains. Thus, our data support that the Heh1-dependent recruitment of Chm7 is a key component of a quality control pathway whose local regulation by Vps4 and the transmembrane nup, Pom152, prevents loss of nuclear compartmentalization by defective NPCs.


Sign in / Sign up

Export Citation Format

Share Document