scholarly journals Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response

2015 ◽  
Vol 210 (7) ◽  
pp. 1239-1256 ◽  
Author(s):  
Ine Vandersmissen ◽  
Sander Craps ◽  
Maarten Depypere ◽  
Giulia Coppiello ◽  
Nick van Gastel ◽  
...  

Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein–SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1.

2003 ◽  
Vol 89 (06) ◽  
pp. 1058-1063 ◽  
Author(s):  
Federico Piscione ◽  
Antonio Silvestro ◽  
Gennaro Galasso ◽  
AnnaMaria Di Donato ◽  
Gabriella Oliva ◽  
...  

SummaryThe aim of this study was to determine whether patients with coronary artery disease (CAD) and concomitant peripheral arterial disease (PAD) have a greater inflammatory status than those with CAD alone. To this aim, we evaluated PAD (ankle/brachial pressure index <0.9), and measured plasma levels of C-reactive protein (CRP), interleukin-6 (IL-6) and the soluble forms of intercellular adhesion molecule-1 (sICAM-1) and vascular cell adhesion molecule-1 (sVCAM-1) in 234 patients who underwent coronary angiography. Median levels of CRP, IL-6 and sICAM-1 were higher in the CAD without PAD (n=134) and CAD+PAD (n=40) groups than in 60 patients without either disease (“controls”). Median CRP values were higher in patients with CAD+PAD than in patients with CAD alone (4.7 mg/L [1.5;7.6] vs 2.4 mg/L [0.9;3.8], p < 0.01). Three-vessel CAD was diagnosed in 60% of CAD+PAD patients and in 21% (p< 0.01) of CAD only patients. After adjustment for confounding factors, only PAD was independently associated with three-vessel CAD (p<0.001). This association was maintained after adjustment for IL-6, the only inflammatory parameter significantly associated with three-vessel CAD at univariate analysis (p<0.01). In conclusion, in CAD the coexistence of PAD is associated with a greater inflammatory status and more widespread coronary atherosclerosis. These results could help to explain the high cardiovascular risk of patients with concomitant CAD and PAD and suggest that PAD be included among the variables used to identify CAD patients for further diagnostic evaluation.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 2089-2097 ◽  
Author(s):  
MB Furie ◽  
MC Tancinco ◽  
CW Smith

Abstract Intercellular adhesion molecule-1 (ICAM-1) is present on the endothelium and binds to one or more members of the CD11/CD18 family of leukocyte surface integrins. To assess the role of these molecules in mediating chemotaxis of neutrophils across the endothelium, an in vitro model consisting of monolayers of human umbilical vein endothelial cells (HUVEC) grown on amniotic connective tissue was used. Neutrophils placed on the apical sides of these cultures migrated across the endothelium in response to chemoattractants added basally. Monoclonal antibodies (MoAbs) to CD11a, CD11b, and CD18 on the neutrophils inhibited this migration by 52% +/- 11%, 29% +/- 19%, and 90% +/- 7%, respectively. An MoAb to ICAM-1 inhibited transendothelial chemotaxis of the leukocytes by 55% +/- 16%. Inhibition was mediated by binding of the MoAb to ICAM-1 on the HUVEC, rather than by any direct effect of the antibody on the neutrophils. When used in combination, MoAbs to CD11a and to CD11b inhibited migration in a nearly additive fashion. A similar additive effect was observed when MoAbs to CD11b and to ICAM-1 were used together. In contrast, MoAbs to CD11a and to ICAM-1 produced no more inhibition when used in combination than when added singly. These results show that ICAM-1, CD11a/CD18, and CD11b/CD18 all participate in controlling migration of neutrophils across endothelial monolayers in response to chemotactic agents.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yingfu Chen ◽  
Burong Feng ◽  
Ye Yuan ◽  
Juan Hu ◽  
Wei Zhao ◽  
...  

Background. Aloe emodin (AE) is a lipid-lowering agent, which could be used to treat hyperlipidemia, thereby reducing the risk of cardiovascular disease. Recent evidence suggests that hyperlipidemia is associated with many cardiac pathological alterations and might worsen myocardial damages. Purpose. The purpose of this study is to evaluate the potential roles and mechanisms of AE in hyperlipidemia-induced oxidative stress and inflammation in the heart. Study Design. We established a hyperlipidemia-induced cardiac inflammation model in rats and cells then administered AE and observed its effect on hyperlipidemia-induced cardiac inflammation. Methods. We used a mouse model of hyperlipidemia caused by a high-fat diet (HFD) for 10 weeks and cell culture experimental models of inflammation in the heart stimulated by PA for 14 h. Inflammatory markers were detected by qRT-PCR, WB, and immunofluorescence. Results. We demonstrated that the expression levels of proinflammatory cytokines IL-1β, IL-6, and TNF-α were increased in the HFD group compared to the normal diet (ND) group, whereas AE treatment significantly reduced their levels in the myocardium. In addition, vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM-1) protein expressions were also inhibited by AE. Our in vitro study showed AE treatment dose-dependently decreased the expression of IL-1β, IL-6, and TNF-α in PA-treated H9C2 cells. Further experiments revealed that AE inhibited PA-induced cell death and promoted the production of intracellular reactive oxygen species (ROS). Mechanically, AE significantly suppressed the upregulation in protein levels of TLR4, IκB, and p-P65l in vivo and in vitro. Conclusion. Taken together, our findings disclose that AE could alleviate HFD/PA-induced cardiac inflammation via inhibition of the TLR4/NF-κB signaling pathway. Thus, AE may be a promising therapeutic strategy for preventing hyperlipidemia-induced myocardial injury.


Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4803-4809 ◽  
Author(s):  
May Ho ◽  
Tineke Schollaardt ◽  
Xiaofei Niu ◽  
Sornchai Looareesuwan ◽  
Kamala D. Patel ◽  
...  

Abstract Plasmodium falciparum-infected erythrocytes (IRBC) roll on the adhesion molecule P-selectin in vitro under flow conditions that approximate the shear stress in capillary and postcapillary venules in which cytoadherence occurs in vivo. The pathological significance of this adhesive interaction is currently unknown. In this study, we further investigated the molecular interactions between IRBC and P-selectin by using a laminar flow system that allowed for the direct visualization of IRBC-substratum interactions. The results showed that the IRBC–P-selectin interaction was Ca2+-dependent and involved the lectin domain of P-selectin and a sialic acid residue on IRBC. The sialylated P-selectin ligand was trypsin-sensitive, which suggests that it could be part of the parasite antigen PfEMP1 that interacts with CD36 and intercellular adhesion molecule-1 (ICAM-1), but different from a trypsin-resistant IRBC ligand that adheres selectively to chondroitin sulfate A. Studies on the rolling and adhesion of IRBC on activated platelets that express both CD36 and P-selectin showed that inhibition of rolling on P-selectin reduced the adhesion of some clinical parasite isolates to CD36, whereas other parasite isolates appeared to interact directly with CD36. Thus, cytoadherence under physiological flow conditions may be mediated by multiple IRBC ligands that interact with different adhesion molecules in a cooperative fashion. These findings underscore the complexity of the interactions betweeen IRBC and vascular endothelium.


Sign in / Sign up

Export Citation Format

Share Document