scholarly journals Aloe Emodin Reduces Cardiac Inflammation Induced by a High-Fat Diet through the TLR4 Signaling Pathway

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yingfu Chen ◽  
Burong Feng ◽  
Ye Yuan ◽  
Juan Hu ◽  
Wei Zhao ◽  
...  

Background. Aloe emodin (AE) is a lipid-lowering agent, which could be used to treat hyperlipidemia, thereby reducing the risk of cardiovascular disease. Recent evidence suggests that hyperlipidemia is associated with many cardiac pathological alterations and might worsen myocardial damages. Purpose. The purpose of this study is to evaluate the potential roles and mechanisms of AE in hyperlipidemia-induced oxidative stress and inflammation in the heart. Study Design. We established a hyperlipidemia-induced cardiac inflammation model in rats and cells then administered AE and observed its effect on hyperlipidemia-induced cardiac inflammation. Methods. We used a mouse model of hyperlipidemia caused by a high-fat diet (HFD) for 10 weeks and cell culture experimental models of inflammation in the heart stimulated by PA for 14 h. Inflammatory markers were detected by qRT-PCR, WB, and immunofluorescence. Results. We demonstrated that the expression levels of proinflammatory cytokines IL-1β, IL-6, and TNF-α were increased in the HFD group compared to the normal diet (ND) group, whereas AE treatment significantly reduced their levels in the myocardium. In addition, vascular cell adhesion molecule 1 (VCAM1) and intercellular adhesion molecule 1 (ICAM-1) protein expressions were also inhibited by AE. Our in vitro study showed AE treatment dose-dependently decreased the expression of IL-1β, IL-6, and TNF-α in PA-treated H9C2 cells. Further experiments revealed that AE inhibited PA-induced cell death and promoted the production of intracellular reactive oxygen species (ROS). Mechanically, AE significantly suppressed the upregulation in protein levels of TLR4, IκB, and p-P65l in vivo and in vitro. Conclusion. Taken together, our findings disclose that AE could alleviate HFD/PA-induced cardiac inflammation via inhibition of the TLR4/NF-κB signaling pathway. Thus, AE may be a promising therapeutic strategy for preventing hyperlipidemia-induced myocardial injury.

2017 ◽  
Vol 43 (5) ◽  
pp. 1961-1973 ◽  
Author(s):  
Yan Bai ◽  
Zhenli Su ◽  
Hanqi Sun ◽  
Wei Zhao ◽  
Xue Chen ◽  
...  

Background/Aims: High-fat diet (HFD) causes cardiac electrical remodeling and increases the risk of ventricular arrhythmias. Aloe-emodin (AE) is an anthraquinone component isolated from rhubarb and has a similar chemical structure with emodin. The protective effect of emodin against cardiac diseases has been reported in the literature. However, the cardioprotective property of AE is still unknown. The present study investigated the effect of AE on HFD-induced QT prolongation in rats. Methods: Adult male Wistar rats were randomly divided into three groups: control, HFD, and AE-treatment groups. Normal diet was given to rats in the control group, high-fat diet was given to rats in HFD and AE-treatment groups for a total of 10 weeks. First, HFD rats and AE-treatment rats were fed with high-fat diet for 4 weeks to establish the HFD model. Serum total cholesterol and triglyceride levels were measured to validate the HFD model. Afterward, AE-treatment rats were intragastrically administered with 100 mg/kg AE each day for 6 weeks. Electrocardiogram monitoring and whole-cell patch-clamp technique were applied to examine cardiac electrical activity, action potential and inward rectifier K+ current (IK1), respectively. Neonatal rat ventricular myocytes (NRVMs) were subjected to cholesterol and/or AE. Protein expression of Kir2.1 was detected by Western blot and miR-1 level was examined by real-time PCR in vivo and in vitro, respectively. Results: In vivo, AE significantly shortened the QT interval, action potential duration at 90% repolarization (APD90) and resting membrane potential (RMP), which were markedly elongated by HFD. AE increased IK1 current and Kir2.1 protein expression which were reduced in HFD rats. Furthermore, AE significantly inhibited pro-arrhythmic miR-1 in the hearts of HFD rats. In vitro, AE decreased miR-1 expression levels resulting in an increase of Kir2.1 protein levels in cholesterol-enriched NRVMs. Conclusions: AE prevents HFD-induced QT prolongation by repressing miR-1 and upregulating its target Kir2.1. These findings suggest a novel pharmacological role of AE in HFD-induced cardiac electrical remodeling.


2018 ◽  
Vol 24 (3) ◽  
pp. 278-287 ◽  
Author(s):  
Shengnan Zhao ◽  
Minglu Liang ◽  
Yilong Wang ◽  
Ji Hu ◽  
Yi Zhong ◽  
...  

The vascular endothelium is a continuous layer of flat polygonal cells that are in direct contact with the blood and participate in responses to inflammation. Chrysin is a flavonoid compound extracted from plants of the genus Asteraceae with a wide range of pharmacological activities and physiological activities. Here, we studied the effects of chrysin on the regulation of the proadhesion and pro-inflammatory phenotypes of the endothelium both in vitro and in vivo. Our results revealed that chrysin strongly inhibited Tohoku Hospital Pediatrics-1 (THP-1) cell adhesion to primary human umbilical vein endothelial cells and concentration-dependently attenuated interleukin 1β-induced increases in intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin messenger RNA levels and ICAM-1 and VCAM-1 protein levels. Previous studies reported that nuclear factor κB (NF-κB) is important in the inflammatory response in endothelial cells, particularly in regulating adhesion molecules, and our data shed light on the mechanisms whereby chrysin suppressed endothelial inflammation via the NF-κB signaling pathway. In addition, our in vivo findings demonstrated the effects of chrysin in the permeability and inflammatory responses of the endothelium to inflammatory injury. Taken together, we conclude that chrysin inhibits endothelial inflammation both in vitro and in vivo, which could be mainly due to its inhibition of NF-κB signaling activation. In conclusion, chrysin may serve as a promising therapeutic candidate for inflammatory vascular diseases.


Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 2089-2097 ◽  
Author(s):  
MB Furie ◽  
MC Tancinco ◽  
CW Smith

Abstract Intercellular adhesion molecule-1 (ICAM-1) is present on the endothelium and binds to one or more members of the CD11/CD18 family of leukocyte surface integrins. To assess the role of these molecules in mediating chemotaxis of neutrophils across the endothelium, an in vitro model consisting of monolayers of human umbilical vein endothelial cells (HUVEC) grown on amniotic connective tissue was used. Neutrophils placed on the apical sides of these cultures migrated across the endothelium in response to chemoattractants added basally. Monoclonal antibodies (MoAbs) to CD11a, CD11b, and CD18 on the neutrophils inhibited this migration by 52% +/- 11%, 29% +/- 19%, and 90% +/- 7%, respectively. An MoAb to ICAM-1 inhibited transendothelial chemotaxis of the leukocytes by 55% +/- 16%. Inhibition was mediated by binding of the MoAb to ICAM-1 on the HUVEC, rather than by any direct effect of the antibody on the neutrophils. When used in combination, MoAbs to CD11a and to CD11b inhibited migration in a nearly additive fashion. A similar additive effect was observed when MoAbs to CD11b and to ICAM-1 were used together. In contrast, MoAbs to CD11a and to ICAM-1 produced no more inhibition when used in combination than when added singly. These results show that ICAM-1, CD11a/CD18, and CD11b/CD18 all participate in controlling migration of neutrophils across endothelial monolayers in response to chemotactic agents.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Ansarullah ◽  
Selvaraj Jayaraman ◽  
Anandwardhan A. Hardikar ◽  
A. V. Ramachandran

Oreocnide integrifolia(OI) leaves are used as folklore medicine by the people of northeast India to alleviate diabetic symptoms. Preliminary studies revealed hypoglycemic and hypolipidemic potentials of the aqueous leaf extract. The present study was carried out to evaluate whether the OI extract induces insulin secretionin vivoandin vitroand also whether it is mediated through the insulin-signaling pathway. The experimental set-up consisted of three groups of C57BL/6J mice strain: (i) control animals fed with standard laboratory diet, (ii) diabetic animals fed with a high-fat diet for 24 weeks and (iii) extract-supplemented animals fed with 3% OI extract along with high-fat diet for 24 weeks. OI-extract supplementation lowered adiposity and plasma glucose and insulin levels. Immunoblot analysis of IRS-1, Akt and Glut-4 protein expressions in muscles of extract-supplemented animals revealed that glucoregulation was mediated through the insulin-signaling pathway. Moreover, immunostaining of pancreas revealed increased insulin immunopositive cells in OI-extract-treated animals. In addition, the insulin secretogogue ability of the OI extract was demonstrated when challenged with high glucose concentration using isolated pancreatic isletsin vitro. Overall, the present study demonstrates the possible mechanism of glucoregulation of OI extract suggestive of its therapeutic potential for the management of diabetes mellitus.


Blood ◽  
1998 ◽  
Vol 91 (12) ◽  
pp. 4803-4809 ◽  
Author(s):  
May Ho ◽  
Tineke Schollaardt ◽  
Xiaofei Niu ◽  
Sornchai Looareesuwan ◽  
Kamala D. Patel ◽  
...  

Abstract Plasmodium falciparum-infected erythrocytes (IRBC) roll on the adhesion molecule P-selectin in vitro under flow conditions that approximate the shear stress in capillary and postcapillary venules in which cytoadherence occurs in vivo. The pathological significance of this adhesive interaction is currently unknown. In this study, we further investigated the molecular interactions between IRBC and P-selectin by using a laminar flow system that allowed for the direct visualization of IRBC-substratum interactions. The results showed that the IRBC–P-selectin interaction was Ca2+-dependent and involved the lectin domain of P-selectin and a sialic acid residue on IRBC. The sialylated P-selectin ligand was trypsin-sensitive, which suggests that it could be part of the parasite antigen PfEMP1 that interacts with CD36 and intercellular adhesion molecule-1 (ICAM-1), but different from a trypsin-resistant IRBC ligand that adheres selectively to chondroitin sulfate A. Studies on the rolling and adhesion of IRBC on activated platelets that express both CD36 and P-selectin showed that inhibition of rolling on P-selectin reduced the adhesion of some clinical parasite isolates to CD36, whereas other parasite isolates appeared to interact directly with CD36. Thus, cytoadherence under physiological flow conditions may be mediated by multiple IRBC ligands that interact with different adhesion molecules in a cooperative fashion. These findings underscore the complexity of the interactions betweeen IRBC and vascular endothelium.


Sign in / Sign up

Export Citation Format

Share Document