scholarly journals THE FINE STRUCTURE OF DIFFERENTIATING XYLEM ELEMENTS

1965 ◽  
Vol 24 (3) ◽  
pp. 415-431 ◽  
Author(s):  
James Cronshaw ◽  
G. Benjamin Bouck

Differentiating xylem elements of Avena coleoptiles have been examined by light and electron microscopy. Fixation in 2 per cent phosphate-buffered osmium tetroxide and in 6 per cent glutaraldehyde, followed by 2 per cent osmium tetroxide, revealed details of the cell wall and cytoplasmic fine structure. The localized secondary wall thickening identified the xylem elements and indicated their state of differentiation. These differentiating xylem elements have dense cytoplasmic contents in which the dictyosomes and elements of rough endoplasmic reticulum are especially numerous. Vesicles are associated with the dictyosomes and are found throughout the cytoplasm. In many cases, these vesicles have electron-opaque contents. "Microtubules" are abundant in the peripheral cytoplasm and are always associated with the secondary wall thickenings. These microtubules are oriented in a direction parallel to the microfibrillar direction of the thickenings. Other tubules are frequently found between the cell wall and the plasma membrane. Our results support the view that the morphological association of the "microtubules" with developing cell wall thickenings may have a functional significance, especially with respect to the orientation of the microfibrils. Dictyosomes and endoplasmic reticulum may have a function in some way connected with the synthetic mechanism of cell wall deposition.

1965 ◽  
Vol 43 (11) ◽  
pp. 1401-1407 ◽  
Author(s):  
James Cronshaw

Cambial derivatives of Acer rubrum have been examined at stages of their differentiation following fixation in 3% or 6% glutaraldehyde with a post fixation in osmium tetroxide. At early stages of development numerous free ribosomes are present in the cytoplasm, and elements of the endoplasmic reticulum tend to align themselves parallel to the cell surfaces. The plasma membrane is closely applied to the cell walls. During differentiation a complex system of cytoplasmic microtubules develops in the peripheral cytoplasm. These microtubules are oriented, mirroring the orientation of the most recently deposited microfibrils of the cell wall. The microtubules form a steep helix in the peripheral cytoplasm at the time of deposition of the middle layer of the secondary wall. During differentiation the free ribosomes disappear from the cytoplasm and numerous elements of rough endoplasmic reticulum with associated polyribosomes become more evident. In many cases the endoplasmic reticulum is associated with the cell surface. During the later stages of differentiation there are numerous inclusions between the cell wall and the plasma membrane.


2020 ◽  
Author(s):  
Xianqiang Wang ◽  
Denghui Wang ◽  
Wenjian Xu ◽  
Lingfei Kong ◽  
Xiao Ye ◽  
...  

Abstract Secondary wall thickening in the sclerenchyma cells is strictly controlled by a complex network of transcription factors in vascular plants. However, little is known about the epigenetic mechanism regulating secondary wall biosynthesis. In this study, we identified that ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1), a H3K4-histone methyltransferase, mediates the regulation of fiber cell wall development in inflorescence stems of Arabidopsis thaliana. Genome-wide analysis revealed that the up-regulation of genes involved in secondary wall formation during stem development is largely coordinated by increasing level of H3K4 tri-methylation. Among all histone methyltransferases for H3K4me3 in Arabidopsis, ATX1 is markedly increased during the inflorescence stem development and loss-of-function mutant atx1 was impaired in secondary wall thickening in interfascicular fibers. Genetic analysis showed that ATX1 positively regulates secondary wall deposition through activating the expression of secondary wall NAC master switch genes, SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) and NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1). We further identified that ATX1 directly binds the loci of SND1 and NST1, and activates their expression by increasing H3K4me3 levels at these loci. Taken together, our results reveal that ATX1 plays a key role in the regulation of secondary wall biosynthesis in interfascicular fibers during inflorescence stem development of Arabidopsis.


2019 ◽  
Author(s):  
Sunita Kushwah ◽  
Alicja Banasiak ◽  
Nobuyuki Nishikubo ◽  
Marta Derba-Maceluch ◽  
Mateusz Majda ◽  
...  

ABSTRACTIn dicotyledons, xyloglucan is the major hemicellulose of primary walls affecting the load-bearing framework with participation of XTH enzymes. We used loss- and gain-of function approaches to study functions of abundant cambial region expressed XTH4 and XTH9 in secondary growth. In secondarily thickened hypocotyls, these enzymes had positive effects on vessel element expansion and fiber intrusive growth. In addition, they stimulated secondary wall thickening, but reduced secondary xylem production. Cell wall analyses of inflorescence stems revealed changes in lignin, cellulose, and matrix sugar composition, indicating overall increase in secondary versus primary walls in the mutants, indicative of higher xylem production compared to wild type (since secondary walls were thinner). Intriguingly, the number of secondary cell wall layers was increased in xth9 and reduced in xth4, whereas the double mutant xth4x9 displayed intermediate number of layers. These changes correlated with certain Raman signals from the walls, indicating changes in lignin and cellulose. Secondary walls were affected also in the interfascicular fibers where neither XTH4 nor XTH9 were expressed, indicating that these effects were indirect. Transcripts involved in secondary wall biosynthesis and in cell wall integrity sensing, including THE1 and WAK2, were highly induced in the mutants, indicating that deficiency in XTH4 and XTH9 triggers cell wall integrity signaling, which, we propose, stimulates the xylem cell production and modulates secondary wall thickening. Prominent effects of XTH4 and XTH9 on secondary xylem support the hypothesis that altered xyloglucan can affect wood properties both directly and via cell wall integrity sensing.SIGNIFICANCE STATEMENTXyloglucan is a ubiquitous component of primary cell walls in all land plants but has not been so far reported in secondary walls. It is metabolized in muro by cell wall-residing enzymes - xyloglucan endotransglycosylases/hydrolases (XTHs), which are reportedly abundant in vascular tissues, but their role in these tissues is unclear. Here we report that two vascular expressed enzymes in Arabidopsis, XTH4 and XTH9 contribute to the secondary xylem cell radial expansion and intrusive elongation in secondary vascular tissues.Unexpectedly, deficiency in their activities highly affect chemistry and ultrastructure of secondary cell walls by non-cell autonomous mechanisms, including transcriptional induction of secondary wall-related biosynthetic genes and cell wall integrity sensors. These results link xyloglucan metabolism with cell wall integrity pathways, shedding new light on previous reports about prominent effects of xyloglucan metabolism on secondary walls.One sentence summaryXTH4 and XTH9 positively regulate xylem cell expansion and fiber intrusive tip growth, and their deficiency alters secondary wall formation via cell wall integrity sensing mechanisms.


2019 ◽  
Vol 60 (10) ◽  
pp. 2293-2306 ◽  
Author(s):  
Shu-Qing Zhao ◽  
Wen-Chao Li ◽  
Yi Zhang ◽  
Alison C Tidy ◽  
Zoe A Wilson

Abstract ROOT UV-B SENSITIVE4 (RUS4) encodes a protein with no known function that contains a conserved Domain of Unknown Function 647 (DUF647). The DUF647-containing proteins RUS1 and RUS2 have previously been associated with root UV-B-sensing pathway that plays a major role in Arabidopsis early seedling morphogenesis and development. Here, we show that RUS4 knockdown Arabidopsis plants, referred to as amiR-RUS4, were severely reduced in male fertility with indehiscent anthers. Light microscopy of anther sections revealed a significantly reduced secondary wall thickening in the endothecium of amiR-RUS4 anthers. We further show that the transcript abundance of the NAC domain genes NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1) and NST2, which have been shown to regulate the secondary cell wall thickenings in the anther endothecium, were dramatically reduced in the amiR-RUS4 floral buds. Expression of the secondary cell wall-associated MYB transcription factor genes MYB103 and MYB85 were also strongly reduced in floral buds of the amiR-RUS4 plants. Overexpression of RUS4 led to increased secondary thickening in the endothecium. However, the rus4-2 mutant exhibited no obvious phenotype. Promoter-GUS analysis revealed that the RUS4 promoter was highly active in the anthers, supporting its role in anther development. Taken together, these results suggest that RUS4, probably functions redundantly with other genes, may play an important role in the secondary thickening formation in the anther endothecium by indirectly affecting the expression of secondary cell wall biosynthetic genes.


2013 ◽  
Vol 35 (5) ◽  
pp. 655-665 ◽  
Author(s):  
Zeng-Guang WANG ◽  
Guo-Hua CHAI ◽  
Zhi-Yao WANG ◽  
Xian-Feng TANG ◽  
Chang-Jiang SUN ◽  
...  

1978 ◽  
Vol 56 (23) ◽  
pp. 2990-2999 ◽  
Author(s):  
G. Faulkner ◽  
Warwick C. Kimmins

Tissue in Phaseolus vulgaris L. cv. Pinto bean bordering local lesions induced by tobacco mosaic virus showed cell wall deposition associated with paramural body formation in a narrow ring of viable cells extending one to three cell diameters around the lesions. Deposition, which led to secondary cell wall thickening, was greatest 3–4 days after inoculation, the time when the lesion stopped expanding. Secondary cell wall thickening, of similar appearance but less pronounced, was seen in tissue bordering local lesions which continued to expand; no significant secondary cell wall thickening was observed in leaves with a nonlocalized infection. Cells bordering mechanical lesions differed markedly in fine structure from cells bordering virus and chemical lesions. It is suggested that the deposition of extra cell wall material in the wall regions of cells bordering fully expanded local lesions is associated with virus localization.


1969 ◽  
Vol 47 (10) ◽  
pp. 1599-1603 ◽  
Author(s):  
Arun K. Mishra

The coenocytic alga Caulerpa sertularioides (Gmelin) Howe was used for the study of the ultrastructure of cell wall and cytoplasm. After ultrasonic maceration and metal shadowing of the cell wall the microfibrils were observed to be random at the tip and parallel for each lamella of the subtip region and the mature portions of rhizome. The microfibrils in the two adjacent lamellae crossed each other at about right angles. The microfibrils of wall trabeculae were parallel to each other and to the long axis of the trabeculae. Fine structure studies of the algal cytoplasm were made using material fixed with glutaraldehyde and osmium tetroxide. The rhizome growing point was studied in detail. A gradient in the differentiation of cytoplasm was observed. The appearance varied from compact, homogeneous cytoplasm in the tip to a reticulate, vacuolate organization in the region farther back. Compartmentation in the cytoplasm was noted in the region immediately behind the compact, homogeneous cytoplasm of the tip region. Numerous smooth-walled vesicles were scattered throughout the growing point of the alga and were observed close to the plasmalemma near the cell wall. Microtubules with axial orientation were observed near the side walls of the alga. These also occurred in parallel orientation with respect to the microfibrils in the trabeculae at the growing points of the latter. The results were discussed with respect to the roles of microtubules and the cytoplasmic vesicles in the process of wall formation.


2021 ◽  
Author(s):  
Clément Chambaud ◽  
Sarah Jane Cookson ◽  
Nathalie Ollat ◽  
Emmanuelle M. F. Bayer ◽  
Lysiane Brocard

Despite recent progress in our understanding of the graft union formation, we still know little about the cellular events underlying the grafting process. This is partially due to the difficulty of reliably targeting the graft interface in electron microscopy to study its ultrastructure and three-dimensional architecture. To overcome this technological bottleneck, we developed a correlative light electron microscopy approach (CLEM) to study the graft interface with high ultrastructural resolution. Grafting hypocotyls of Arabidopsis thaliana lines expressing YFP or mRFP in the endoplasmic reticulum allowed the efficient targeting of the grafting interface for under light and electron microscopy. To explore the potential of our method to study sub-cellular events at the graft interface, we focused on the formation of secondary plasmodesmata (PD) between the grafted partners. We showed that 4 classes of PD were formed at the interface and that PD introgression into the call wall was initiated equally by both partners. Moreover, the success of PD formation appeared not systematic with a third of PD not spanning the cell wall entirely. Characterizing the ultrastructural characteristics of these failed PD gives us insights into the process of secondary PD biogenesis. We showed that the thinning of the cell wall and the endoplasmic reticulum-plasma membrane tethering seem to be required for the establishment of symplastic connections between the scion and the rootstock. The resolution reached in this work shows that our CLEM method offer a new scale to the study for biological processes requiring the combination of light and electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document