cell wall development
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 20)

H-INDEX

24
(FIVE YEARS 1)

2022 ◽  
Vol 23 (2) ◽  
pp. 814
Author(s):  
Qigui Li ◽  
Shujun Nie ◽  
Gaoke Li ◽  
Jiyuan Du ◽  
Ruchang Ren ◽  
...  

The cellulose of the plant cell wall indirectly affects the cell shape and straw stiffness of the plant. Here, the novel brittleness mutant brittle stalk-5 (bk-5) of the maize inbred line RP125 was characterized. We found that the mutant displayed brittleness of the stalk and even the whole plant, and that the brittleness phenotype existed during the whole growth period from germination to senescence. The compressive strength was reduced, the cell wall was thinner, and the cellulose content was decreased compared to that of the wild type. Genetic analysis and map-based cloning indicated that bk-5 was controlled by a single recessive nuclear gene and that it was located in a 90.2-Kb region on chromosome 3 that covers three open reading frames (ORFs). Sequence analysis revealed a single non-synonymous missense mutation, T-to-A, in the last exon of Zm00001d043477 (B73: version 4, named BK-5) that caused the 951th amino acid to go from leucine to histidine. BK-5 encodes a cellulose synthase catalytic subunit (CesA), which is involved with cellulose synthesis. We found that BK-5 was constitutively expressed in all tissues of the germinating stage and silking stage, and highly expressed in the leaf, auricula, and root of the silking stage and the 2-cm root and bud of the germinating stage. We found that BK-5 mainly localized to the Golgi apparatus, suggesting that the protein might move to the plasma membrane with the aid of Golgi in maize. According to RNA-seq data, bk-5 had more downregulated genes than upregulated genes, and many of the downregulated genes were enzymes and transcription factors related to cellulose, hemicellulose, and lignin biosynthesis of the secondary cell wall. The other differentially expressed genes were related to metabolic and cellular processes, and were significantly enriched in hormone signal transduction, starch and sucrose metabolism, and the plant–pathogen interaction pathway. Taken together, we propose that the mutation of gene BK-5 causes the brittle stalk phenotype and provides important insights into the regulatory mechanism of cellulose biosynthesis and cell wall development in maize.


Nativa ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 600-604
Author(s):  
Anderson Bergamasco Hryczyna ◽  
Tiago Roque Benetoli da Silva ◽  
Lucas Ambrosano ◽  
Gesmila Karoline Zampronio

A canola (Brassica napus L. var oleífera) é uma oleaginosa, pertencente à família Brassicaceae, resultado do cruzamento interespecífico entre repolho silvestre (Brassica oleracea L.) e mostarda (Brassica rapa L., syn. campestris). O boro é considerado um micronutriente, que atua na translocação de açúcares, formação de proteínas, crescimento do tubo polínico, germinação dos grãos de pólen, desenvolvimento das sementes e das paredes celulares. O objetivo desta pesquisa foi estudar as interferências nos componentes produtivos de dois híbridos de canola com a aplicação de adubação com boro por via foliar. Para tanto, instalou-se um experimento em condições de campo num delineamento experimental de blocos ao acaso em arranjo fatorial 2 x 3. Utilizou-se os híbridos Hyola 433 e Hyola 575 CL e três doses de boro foliar (0;100; 200) g ha-1 de B. As seguintes características foram avaliadas:  número de plantas, número de síliquas por planta, massa de parte aérea, massa de 100 grãos e produtividade. Com a aplicação de boro houve aumento da massa de grãos independente do híbrido. Para produtividade houve aumento somente para o híbrido Hyola 433, sendo a maior produtividade alcançada na dose de 200 g ha-1. O híbrido Hyola 575 CL não teve sua produtividade alterada com a aplicação de boro. Palavras-chave: ácido bórico; Brassica napus L. var. oleífera; colza; massa de 100 grãos; oleaginosa.   Leaf boron fertilization in two rapessed   ABSTRACT: Rapessed (Brassica napus L. var oleífera) is an oilseed, belongs to Brassicaceae family, resultated between inter specific crossing of wild cabbage (Brassica oleracea L.) and mustard (Brassica rapa L., syn. campestris). Boron is considered a micronutrient, acting in sugars translocation, protein formation, pollen tube growth, pollen grain germination, seeds and cell wall development. The aimed was to study the interferences in productive components of two rapessed hybrids with application of boron fertilization by leaf application. For this, a field experiment was installed by using experimental design of randomized blocks in a 2 x 3 factorial scheme.  Hyola 433 and Hyola 575CL hybrids and three doses of leaf boron (0; 100 and 200) g ha-1 of B were used. The following characteristics were evaluated: plants number, number of pods per plant, mass of one hundred grains and yield. With boron application there was an increase in grain mass independent of the hybrid. In relation grain yield there was increase only for Hyola 433 hybrid, with the highest yield reached at 200 g ha-1. The Hyola 575CL hybrid did not have its productivity altered with the application of boron. Keywords: boric acid; Brassica napus L. var. oleífera; mustard; mass of a hundred grass; oilseeds.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hebi Zhuang ◽  
Sun-Li Chong ◽  
Borah Priyanka ◽  
Xiao Han ◽  
Erpei Lin ◽  
...  

Abstract Background R2R3-MYB is a class of transcription factor crucial in regulating secondary cell wall development during wood formation. The regulation of wood formation in gymnosperm has been understudied due to its large genome size. Using Single-Molecule Real-Time sequencing, we obtained full-length transcriptomic libraries from the developmental stem of Cunninghamia lanceolata, a perennial conifer known as Chinese fir. The R2R3-MYB of C. lanceolata (hereafter named as ClMYB) associated with secondary wall development were identified based on phylogenetic analysis, expression studies and functional study on transgenic line. Results The evolutionary relationship of 52 ClMYBs with those from Arabidopsis thaliana, Eucalyptus grandis, Populus trichocarpa, Oryza sativa, two gymnosperm species, Pinus taeda, and Picea glauca were established by neighbour-joining phylogenetic analysis. A large number of ClMYBs resided in the woody-expanded subgroups that predominated with the members from woody dicots. In contrast, the woody-preferential subgroup strictly carrying the members of woody dicots contained only one candidate. The results suggest that the woody-expanded subgroup emerges before the gymnosperm/angiosperm split, while most of the woody-preferential subgroups are likely lineage-specific to woody dicots. Nine candidates shared the same subgroups with the A. thaliana orthologs, with known function in regulating secondary wall development. Gene expression analysis inferred that ClMYB1/2/3/4/5/26/27/49/51 might participate in secondary wall development, among which ClMYB1/2/5/26/27/49 were significantly upregulated in the highly lignified compression wood region, reinforcing their regulatory role associated with secondary wall development. ClMYB1 was experimentally proven a transcriptional activator that localised in the nucleus. The overexpression of ClMYB1 in Nicotiana benthamiana resulted in an increased lignin deposition in the stems. The members of subgroup S4, ClMYB3/4/5 shared the ERF-associated amphiphilic repression motif with AtMYB4, which is known to repress the metabolism of phenylpropanoid derived compounds. They also carried a core motif specific to gymnosperm lineage, suggesting divergence of the regulatory process compared to the angiosperms. Conclusions This work will enrich the collection of full-length gymnosperm-specific R2R3-MYBs related to stem development and contribute to understanding their evolutionary relationship with angiosperm species.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jennifer L. Brown ◽  
Candice L. Swift ◽  
Stephen J. Mondo ◽  
Susanna Seppala ◽  
Asaf Salamov ◽  
...  

AbstractAnaerobic fungi and methanogenic archaea are two classes of microorganisms found in the rumen microbiome that metabolically interact during lignocellulose breakdown. Here, stable synthetic co-cultures of the anaerobic fungus Caecomyces churrovis and the methanogen Methanobacterium bryantii (not native to the rumen) were formed, demonstrating that microbes from different environments can be paired based on metabolic ties. Transcriptional and metabolic changes induced by methanogen co-culture were evaluated in C. churrovis across a variety of substrates to identify mechanisms that impact biomass breakdown and sugar uptake. A high-quality genome of C. churrovis was obtained and annotated, which is the first sequenced genome of a non-rhizoid-forming anaerobic fungus. C. churrovis possess an abundance of CAZymes and carbohydrate binding modules and, in agreement with previous studies of early-diverging fungal lineages, N6-methyldeoxyadenine (6mA) was associated with transcriptionally active genes. Co-culture with the methanogen increased overall transcription of CAZymes, carbohydrate binding modules, and dockerin domains in co-cultures grown on both lignocellulose and cellulose and caused upregulation of genes coding associated enzymatic machinery including carbohydrate binding modules in family 18 and dockerin domains across multiple growth substrates relative to C. churrovis monoculture. Two other fungal strains grown on a reed canary grass substrate in co-culture with the same methanogen also exhibited high log2-fold change values for upregulation of genes encoding carbohydrate binding modules in families 1 and 18. Transcriptional upregulation indicated that co-culture of the C. churrovis strain with a methanogen may enhance pyruvate formate lyase (PFL) function for growth on xylan and fructose and production of bottleneck enzymes in sugar utilization pathways, further supporting the hypothesis that co-culture with a methanogen may enhance certain fungal metabolic functions. Upregulation of CBM18 may play a role in fungal–methanogen physical associations and fungal cell wall development and remodeling.


2021 ◽  
Author(s):  
Jennifer L Brown ◽  
Candice L Swift ◽  
Stephen Mondo ◽  
Susanna Seppala ◽  
Asaf Salamov ◽  
...  

Anaerobic fungi and methanogenic archaea are two classes of microorganisms found in the rumen microbiome that metabolically interact during lignocellulose breakdown. Here, stable synthetic co-cultures of the anaerobic fungus Caecomyces churrovis and the methanogen Methanobacterium bryantii (not native to the rumen) were formed, demonstrating that microbes from different environments can be paired based on metabolic ties. Transcriptional and metabolic changes induced by methanogen co-culture were evaluated in C. churrovis across a variety of substrates to identify mechanisms that impact biomass breakdown and sugar uptake. A high-quality genome of C. churrovis was obtained and annotated, which is the first sequenced genome of a non-rhizoid forming anaerobic fungus. C. churrovis possess an abundance of CAZymes and carbohydrate binding modules and, in agreement with previous studies of early-diverging fungal lineages, N6-methyldeoxyadenine (6mA) was associated with transcriptionally active genes. Co-culture with the methanogen increased overall transcription of CAZymes, carbohydrate binding modules, and dockerin domains in co-cultures grown on both lignocellulose and cellulose and caused upregulation of genes coding associated enzymatic machinery including carbohydrate binding modules in family 18 and dockerin domains across multiple growth substrates relative to C. churrovis monoculture. Two other fungal strains grown on a reed canary grass substrate in co-culture with the same methanogen also exhibited high log2fold change values for upregulation of genes encoding carbohydrate binding modules in families 1 and 18. Transcriptional upregulation indicated that co-culture of the C. churrovis strain with a methanogen may enhance pyruvate formate lyase (PFL) function for growth on xylan and fructose and production of bottleneck enzymes in sugar utilization pathways, further supporting the hypothesis that co-culture with a methanogen may enhance certain fungal metabolic functions. Upregulation of CBM18 may play a role in fungal-methanogen physical associations and fungal cell wall development and remodeling.


2021 ◽  
Author(s):  
Benjamin T Julius ◽  
Tyler J McCubbin ◽  
Rachel A Mertz ◽  
Nick Baert ◽  
Jan Knoblauch ◽  
...  

Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (BK2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, BK2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.


2021 ◽  
Author(s):  
Beaugrand Johnny ◽  
Camille Alvarado ◽  
Marie-Francoise Devaux ◽  
Camille Rivard ◽  
Sylvie Durand ◽  
...  

Flax lodging is an issue of great interest for producers due to its economic impact. To better understand its effects at the cell wall and stem scale, new knowledge regarding the cell wall composition dynamics during cell wall development and after a 90° tilt bending stress is reported. Deep-Ultra Violet fluorescence emission (DUV) dynamics recorded at the Synchrotron SOLEIL-DISCO beamline by multichannel autofluorescence imaging is reported for five cellular wall types of flax stems after an artificially induced gravitropic reaction. Three flax growth development stages, namely, the vegetative stage (VS), the fast growth (FG) and the mature stage (MS), were selected in normal plants, referred to as the control plants, or in gravitropic-induced response plants, referred to as 90° tilted plants. <br>


2021 ◽  
Author(s):  
Beaugrand Johnny ◽  
Camille Alvarado ◽  
Marie-Francoise Devaux ◽  
Camille Rivard ◽  
Sylvie Durand ◽  
...  

Flax lodging is an issue of great interest for producers due to its economic impact. To better understand its effects at the cell wall and stem scale, new knowledge regarding the cell wall composition dynamics during cell wall development and after a 90° tilt bending stress is reported. Deep-Ultra Violet fluorescence emission (DUV) dynamics recorded at the Synchrotron SOLEIL-DISCO beamline by multichannel autofluorescence imaging is reported for five cellular wall types of flax stems after an artificially induced gravitropic reaction. Three flax growth development stages, namely, the vegetative stage (VS), the fast growth (FG) and the mature stage (MS), were selected in normal plants, referred to as the control plants, or in gravitropic-induced response plants, referred to as 90° tilted plants. <br>


2021 ◽  
Author(s):  
Hebi Zhuang ◽  
Sun-Li Chong ◽  
Priyanka Borah ◽  
Xiao Han ◽  
Erpei Lin ◽  
...  

Abstract Background: R2R3-MYB is a class of transcription factor crucial in regulating secondary cell wall development during wood formation. The regulation of wood formation in gymnosperm has been understudied due to its large genome size. Using Single-Molecule Real-Time sequencing, we obtained full-length transcriptomic libraries from the developmental stem of Cunninghamia lanceolata, a perennial conifer known as Chinese fir. The R2R3-MYB of C. lanceolata (hereafter named as ClMYB) associated with secondary wall development were identified based on phylogenetic analysis, expression studies and functional study on transgenic line. Results: The evolutionary relationship of 52 ClMYBs with those from Arabidopsis thaliana, Eucalyptus grandis, Populus trichocarpa, Oryza sativa, two gymnosperm species, Pinus taeda, and Picea glauca were established by neighbour-joining phylogenetic analysis. A large number of ClMYBs resided in the woody-expanded subgroups that predominated with the members from woody dicots. In contrast, the woody-preferential subgroup strictly carrying the members of woody dicots contained only one candidate. The results suggested that the woody-expanded subgroup emerges before the gymnosperm/angiosperm split, while most of the woody-preferential subgroups are likely lineage-specific to woody dicots. Nine candidates shared the same subgroups with the A. thaliana orthologs, with known function in regulating secondary wall development. Gene expression analysis inferred that ClMYB1/2/3/4/5/26/27/49/51 might participate in secondary wall development, among which ClMYB1/2/5/26/27/49 were significantly upregulated in the highly lignified compression wood region, reinforcing their regulatory role associated with secondary wall development. ClMYB1 was experimentally proven a transcriptional activator that localised in the nucleus. The overexpression of ClMYB1 in Nicotiana benthamiana resulted in an increased lignin deposition in the stems. The members of subgroup S4, ClMYB3/4/5 shared the ERF-associated amphiphilic repression motif with AtMYB4, which is known to repress the metabolism of phenylpropanoid derived compounds. They also carried a core motif specific to gymnospermm lineage, suggesting divergence of the regulatory process compared to the angiosperms.Conclusions: This work will enrich the collection of full-length gymnosperm-specific R2R3-MYBs related to stem development and contribute to understanding their evolutionary relationship with angiosperm species.


Sign in / Sign up

Export Citation Format

Share Document