scholarly journals THE EFFECTS OF ENUCLEATION ON THE CYTOPLASMIC MEMBRANES OF AMOEBA PROTEUS

1968 ◽  
Vol 37 (2) ◽  
pp. 300-315 ◽  
Author(s):  
Charles J. Flickinger

The dependence of cytoplasmic membranes upon the nucleus was studied by examining enucleated amebae with the electron microscope at intervals up to 1 wk after enucleation. Amebae were cut into two approximately equal parts, and the fine structure of the enucleated portions was compared with that of the nucleated parts and starved whole cells which had been maintained under the same conditions. Golgi bodies were diminished in size 1 day after enucleation and were not detected in cells enucleated for more than 2 days. The endoplasmic reticulum of enucleated cells appeared to increase in amount and underwent changes in its morphology. The sparsely scattered short tubules of granular endoplasmic reticulum present in unmanipulated amebae from stock cultures were replaced in 1–3-day enucleates by long narrow cisternae. In 3–7-day enucleates, similar cisternae of granular endoplasmic reticulum encircled areas of cytoplasm partially or completely. It was estimated that in most cases hundreds of these areas encircled by two rough membranes were formed per enucleated cell. The number of ribosomes studding the surface of the endoplasmic reticulum decreased progressively with time after enucleation. In contrast, the membranes of nucleated parts and starved whole cells did not undergo these changes. The possible identification of membrane-encircled areas as cytolysomes and their mode of formation are considered. Implications of the observations regarding nuclear regulation of the form of the Golgi apparatus and the endoplasmic reticulum are discussed.

1969 ◽  
Vol 5 (3) ◽  
pp. 699-726
Author(s):  
LOWELL E. DAVIS

The differentiation of neurosensory cells in Hydra has been studied at the level of the electron microscope. These cells arise from interstitial cells (undifferentiated cells) and not from pre-existing nerve cells. Furthermore, there is no evidence to suggest that neurosensory cells represent a stage in the development of other nerve cells, i.e. ganglionic and neurosecretory cells. Major cytoplasmic changes in fine structure during differentiation include development of a cilium and associated structures (basal body, basal plate, rootlets), development of microtubules and at least two neurites, increase in Golgi lamellae and formation of dense droplets typical of neurosecretory droplets, structural variations in mitochondria and a decrease in the number of ribosomes. Granular endoplasmic reticulum is characteristically poorly developed in all stages of differentiation, including the mature neurosensory cell. Nuclear and nucleolar changes also occur during differentiation but these are less dramatic than the cytoplasmic events. The possibility of neurosensory cells being bi- or multiciliated and the presence of intercellular bridges between these cells are considered. The function of neurosensory cells is discussed briefly in relation to the function of the cilium and neurosecretory droplets.


1975 ◽  
Vol 53 (8) ◽  
pp. 1093-1100 ◽  
Author(s):  
C.-M. Yin ◽  
G. M. Chippendale

The fine structure of the neurosecretory (NS) cells of the frontal ganglion (FG) of diapause and non-diapause mature larvae of the southwestern corn borer, Diatraea grandiosella, was compared. Two large (15- to 20-μm diam) NS cells are typically found in each FG. Their cytoplasm stained deeply purple with paraldehyde fuchsin and contained granules 1500–2500 Å in diameter. The granules in the NS cells of non-diapause larvae were often associated with Golgi bodies whereas those of the diapause larvae were associated with dilated cisternae of the granular endoplasmic reticulum. Fewer Golgi bodies were observed in sections of NS cells of the FG of diapause larvae than in those of non-diapause larvae. Sections prepared from diapause larvae obtained conventionally by exposure to low temperatures, and experimentally by treatment with a juvenile hormone mimic, gave similar results.Our findings show that granules accumulate in the perikaryon of the NS cells of the FG of diapause larvae and suggest that the granular endoplasmic reticulum is involved in their formation. The shutdown of the transport of these NS granules from the FG appears to be a factor in some yet to be determined phase of the neuroendocrine regulation of diapause.


1978 ◽  
Vol 34 (1) ◽  
pp. 53-63
Author(s):  
C.J. Flickinger

The appearance of enzymic activity during the development of the Golgi apparatus was studied by cytochemical staining of renucleated amoebae. In cells enucleated for 4 days, there was a great decline in size and number of Golgi bodies, or dictyosomes. Subsequent renucleation by nuclear transplantation resulted in a regeneration of Golgi bodies. Samples of amoebae were fixed and incubated for cytochemical staining at intervals of 1, 6, or 24 h after renucleation. Enzymes selected for study were guanosine diphosphatase (GDPase), esterase, and thiamine pyrophosphatase (TPPase). All three were found in the Golgi apparatus of normal amoebae but they differed in their overall intracellular distribution. GDPase was normally present at the convex pole of the Golgi apparatus, in rough endoplasmic reticulum, and in the nuclear envelope. In amoebae renucleated for 1 h, light reaction product for GDPase was present throughout the small stacks of cisternae that represented the forming Golgi apparatus. By 6 h following the operation GDPase reaction product was concentrated at the convex pole of the Golgi apparatus. Esterase, which was distributed throughout the stacks of normal Golgi cisternae, displayed a similar distribution in the forming Golgi bodies as soon as they were visible. TPPase was normally present in the Golgi apparatus but was not found in the endoplasmic reticulum. In contrast to the other enzymes, TPPase reaction product was absent from the forming Golgi apparatus 1 and 6 h after renucleation, and did not appear in the Golgi apparatus until 24 h after operation. Thus, enzymes held in common between the rough endoplasmic reticulum and the Golgi apparatus were present in the forming Golgi apparatus as soon as it was detectable, but an enzyme cytochemically localized to the Golgi apparatus only appeared later in development of the organelle. It is suggested that Golgi membranes might be derived from the endoplasmic reticulum and thus immediately contain endoplasmic reticulum enzymes, while Golgi-specific enzymes are added later in development.


1969 ◽  
Vol 43 (2) ◽  
pp. 289-311 ◽  
Author(s):  
P. Whur ◽  
Annette Herscovics ◽  
C. P. Leblond

Rat thyroid lobes incubated with mannose-3H, galactose-3H, or leucine-3H, were studied by radioautography. With leucine-3H and mannose-3H, the grain reaction observed in the light microscope is distributed diffusely over the cells at 5 min, with no reaction over the colloid. Later, the grains are concentrated towards the apex, and colloid reactions begin to appear by 2 hr. With galactose-3H, the reaction at 5 min is again restricted to the cells but it consists of clumped grains next to the nucleus. Soon after, grains are concentrated at the cell apex and colloid reactions appear in some follicles as early as 30 min. Puromycin almost totally inhibits incorporation of leucine-3H and mannose-3H, but has no detectable effect on galactose-3H incorporation during the 1st hr. Quantitation of electron microscope radioautographs shows that mannose-3H label localizes initially in the rough endoplasmic reticulum, and by 1–2 hr much of this reaction is transferred to the Golgi apparatus. At 3 hr and subsequently, significant reactions are present over apical vesicles and colloid, while the Golgi reaction declines. Label associated with galactose-3H localizes initially in the Golgi apparatus and rapidly transfers to the apical vesicles, and then to the colloid. These findings indicate that mannose incorporation into thyroglobulin precursors occurs within the rough endoplasmic reticulum; these precursors then migrate to the Golgi apparatus, where galactose incorporation takes place. The glycoprotein thus formed migrates via the apical vesicles to the colloid.


1980 ◽  
Vol 28 (3) ◽  
pp. 231-237 ◽  
Author(s):  
R S Decker ◽  
M L Decker ◽  
A R Poole

Lysosomal cathepsin D has been localized with the electron microscope employing an indirect immunohistochemical method using peroxidase labeled, monospecific antibody Fab' subunits. The acid proteinase has been demonstrated within secondary lysosomes of cardiac myocytes and interstitial cells, but not in components of the Golgi apparatus or endoplasmic reticulum. Incubations with a variety of peroxidatic inhibitors suggests that the staining that is observed in secondary lysosomes is attributable to the peroxidase-labeled antibody and not to endogenous oxidation of DAB. The protocol outlined here provides a reproducible method to localize the major lysosomal acid proteinase of the heart at the subcellular level.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mathias S. Weyland ◽  
Harold Fellermann ◽  
Maik Hadorn ◽  
Daniel Sorek ◽  
Doron Lancet ◽  
...  

We propose an automaton, a theoretical framework that demonstrates how to improve the yield of the synthesis of branched chemical polymer reactions. This is achieved by separating substeps of the path of synthesis into compartments. We use chemical containers (chemtainers) to carry the substances through a sequence of fixed successive compartments. We describe the automaton in mathematical terms and show how it can be configured automatically in order to synthesize a given branched polymer target. The algorithm we present finds an optimal path of synthesis in linear time. We discuss how the automaton models compartmentalized structures found in cells, such as the endoplasmic reticulum and the Golgi apparatus, and we show how this compartmentalization can be exploited for the synthesis of branched polymers such as oligosaccharides. Lastly, we show examples of artificial branched polymers and discuss how the automaton can be configured to synthesize them with maximal yield.


1977 ◽  
Vol 74 (2) ◽  
pp. 399-413 ◽  
Author(s):  
AR Hand ◽  
C Oliver

The method of secretory granuleformation in the acinar cells of the rat exorbital lacrimal gland was studied by electron microscope morphological and cytochemical techniques. Immature secretory granules at the inner face of the Golgi apparatus were frequently attached to a narrow cisternal structure similar to GERL as described in neurons by Novikoff et al. (Novikoff, P. M., A. B. Novikoff, N. Quintana, and J.-J. Hauw. 1971. J. Cell Bio. 50:859-886). In the lacrimal gland. GERL was located adjacent to the inner Golgi saccule, or separated from it by a variable distance. Portions of GERL were often closely paralleled by modified cisternae of rough endoplasmic reticulum (RER), which lacked ribosomes on the surface adjacent to GERL. Diaminobenzidine reaction product of the secretory enzyme peroxidase was localized in the cisternae of the nuclear envelope, RER, peripheral Golgi vesicles, Golgi saccules, and immature and mature secretory granules. GERL was usually free of peroxidase reaction product or contained only a small amount. Thiamine pyrophosphatase reaction product was present in two to four inner Golgi saccules; occasionally, the innermost saccule was dilated and fenestrated, and contained less reaction product than the next adjacent saccule. Acid phosphatase (AcPase) reaction product was present in GERL, immature granules, and, rarely, in the innermost saccule, but not in the rest of the Golgi saccules. Thick sections of AcPase preparations viewed at 100 kV revealed that GERL consisted of cisternal, and fenestrated or tublular portions. The immature granules were attached to GERL by multiple connections to the tublular portions. These results suggest that, in the rat exorbital lacrimal gland, the Golgi saccules participate in the transport of secretory proteins, and that GERL is involved in the formation of secretory granules.


1979 ◽  
Vol 07 (04) ◽  
pp. 333-344 ◽  
Author(s):  
Moo Rim Byung

An investigation was conducted to delineate the fine structure of steroid-producing ovarian theca interna cells following administration of Korean Panax ginseng to rats for 60 days. The cytoplasmic changes were observed in the ginseng-treated theca interna cells, increased number, size and density of the mitochondria, and increased size of the smooth surfaced endoplasmic reticulum, the rough surfaced endoplasmic reticulum and the Golgi apparatus. The nucleus and nucleolus were slightly enlarged and increased numbers of dense bodies were seen whereas lipid droplets were decreased in number. The changes may result from hyperfunction of the steroid-producing cells. Morphologic changes seen may represent stimulating effects on the steroid-producing cells of the theca interna in ginseng-treated animals.


1966 ◽  
Vol 44 (3) ◽  
pp. 331-340 ◽  
Author(s):  
Shimon Klein ◽  
Yehuda Ben-Shaul

Changes in cell fine structure were studied in axes of green lima bean seeds soaked in water for 1–48 hours. At the beginning of the imbibition period the cortical and pith cells and to a smaller degree the cells of the future conductive tissues contain several vacuoles filled with an amorphous substance. Almost all of the cells contain lipid droplets arranged exclusively along cell walls. The endoplasmic reticulum appears in the form of long tubules, predominantly occupying the peripheral parts of the cell, surrounding the nucleus. A large concentration of ribosomes, mostly unattached, can be found in the cytoplasm. Similar particles make up the bulk of the nucleolus, but could not be found in plastids, which frequently contained starch, but were devoid of internal membranes. Only very few Golgi bodies occur. No changes in fine structure seem to occur during the first 4 hours of imbibition, but after 24 hours the lipid droplets and the vacuolar content have disappeared, the endoplasmic reticulum is more evenly distributed throughout the cells, and a large number of Golgi bodies can be seen.


Sign in / Sign up

Export Citation Format

Share Document