scholarly journals THE NERVOUS ENVIRONMENT OF INDIVIDUAL SMOOTH MUSCLE CELLS OF THE GUINEA PIG VAS DEFERENS

1968 ◽  
Vol 37 (3) ◽  
pp. 794-817 ◽  
Author(s):  
Neil C. R. Merrillees

Smooth muscle cells of the external longitudinal coat of the guinea pig vas deferens were followed for 480 µ at 4.5-µ intervals. Muscle bundles and fibers interwove, facilitating intermuscular and neuromuscular contacts. The ribbon- or rodlike muscle cells were about 450 µ long, 3,000 µ3 in volume, and 4,500 µ2 in area. The thickened nuclear zone lay anywhere along the middle one-third of the cell. Intercellular distances were 500–800 A. Intrusions were rare, and tight-junctions absent. At any level in a field of 80 muscle fibers there were 10–15 nerve bundles, each containing several varicose axons. Bundles and axons divided. Axons, en passage, were frequently within 500–1,000 A of a muscle fiber. En passage close contacts were rate. Axon terminations were bare, and bare axons invariably terminated. Bare terminations had scattered vesicle-laden varicosities and were from 10µ-60 µ in length, and all ended within 500 A of muscle fibers. Some made close contact with muscle fibers. Less than half of the muscle cells received this close contact, but some cells were approached by more than one termination. Most terminations involved more than one cell. Some cells had little or no innervation. Some groups of cells had a rich innervation. There was very little evidence of sensory innervation. These conclusions are not valid for other smooth muscles.

1998 ◽  
Vol 76 (7-8) ◽  
pp. 802-806 ◽  
Author(s):  
J Noireaud ◽  
O Souilem ◽  
S Baudet ◽  
J -C Bidon ◽  
M Gogny ◽  
...  

Smooth muscles hyperresponsiveness is a common feature in anaphylaxis and allergic diseases. The aim of the present work was to investigate whether the enhanced reactivity of sensitized guinea-pig vas deferens was associated with changes in the resting membrane potential (Er) of the smooth muscle cells. Active sensitization was performed by subcutaneous injection of egg albumen. Er was measured in vitro in isolated vas deferens with conventional KCl-filled microelectrodes. Quantification of [3H]ouabain binding sites, measurements of 86Rb efflux, and measurements of Na and K contents were also performed. In normal physiological solution, at 35°C, Er was a mean of -54.1 ± 0.3 mV (mean ± SEM) in control vas deferens. Sensitization resulted in depolarizing Er by about 7 mV. In control and sensitized preparations, the 3H-ouabain binding site concentration, the efflux of 86Rb, and the K content were similar. In guinea-pig vas deferens, active sensitization induced a partial depolarization of the resting membrane potential of the smooth muscle cells, which did not result from a downregulation of Na+-K+ pump sites.Key words: hyperreactivity, sensitization, Na+-K+ ATPase, guinea-pig, vas deferens, smooth muscle.


2001 ◽  
Vol 534 (2) ◽  
pp. 313-326 ◽  
Author(s):  
Yoshiaki Ohi ◽  
Hisao Yamamura ◽  
Norihiro Nagano ◽  
Susumu Ohya ◽  
Katsuhiko Muraki ◽  
...  

1967 ◽  
Vol 50 (10) ◽  
pp. 2459-2475 ◽  
Author(s):  
M. R. Bennett

The effect of intracellular current pulses on the membrane of smooth muscle cells of the guinea pig vas deferens at rest and during transmission was studied. Two main response types were identified: active response cells, in which a spike was initiated in response to depolarizing currents of sufficient strength and duration; passive response cells, in which depolarizing currents gave only electrotonic potential changes. These cells were three times more numerous than the active response cells. During the crest of the active response the input resistance fell by about 25% of the resting value. Comparison of the active response with the action potential due to stimulating the hypogastric nerve showed that the former was smaller in amplitude and had a slower rate of rise and higher threshold. Electrical coupling occurred between the smooth muscle cells during the propagation of the action potential. Depolarizing current pulses had no effect on the amplitude of the excitatory junction potential (E.J.P.) in passive response cells, but in general did decrease its amplitude in active response cells. These results are discussed with respect to the mechanism of autonomic neuroeffector transmission.


Sign in / Sign up

Export Citation Format

Share Document