scholarly journals ULTRASTRUCTURE AND TIME COURSE OF MITOSIS IN THE FUNGUS FUSARIUM OXYSPORUM

1972 ◽  
Vol 55 (2) ◽  
pp. 368-389 ◽  
Author(s):  
James R. Aist ◽  
P. H. Williams

Mitosis in Fusarium oxysporum Schlect. was studied by light and electron microscopy. The average times required for the stages of mitosis, as determined from measurements made on living nuclei, were as follows: prophase, 70 sec; metaphase, 120 sec; anaphase, 13 sec; and telophase, 125 sec, for a total of 5.5 min. New postfixation procedures were developed specifically to preserve the fine-structure of the mitotic apparatus. Electron microscopy of mitotic nuclei revealed a fibrillo-granular, extranuclear Spindle Pole Body (SPB) at each pole of the intranuclear, microtubular spindles. Metaphase chromosomes were attached to spindle microtubules via kinetochores, which were found near the spindle poles at telophase. The still-intact, original nuclear envelope constricted around the incipient daughter nuclei during telophase.

1997 ◽  
Vol 137 (7) ◽  
pp. 1567-1580 ◽  
Author(s):  
Bruce F. McEwen ◽  
Amy B. Heagle ◽  
Grisel O. Cassels ◽  
Karolyn F. Buttle ◽  
Conly L. Rieder

Kinetochore microtubules (kMts) are a subset of spindle microtubules that bind directly to the kinetochore to form the kinetochore fiber (K-fiber). The K-fiber in turn interacts with the kinetochore to produce chromosome motion toward the attached spindle pole. We have examined K-fiber maturation in PtK1 cells using same-cell video light microscopy/serial section EM. During congression, the kinetochore moving away from its spindle pole (i.e., the trailing kinetochore) and its leading, poleward moving sister both have variable numbers of kMts, but the trailing kinetochore always has at least twice as many kMts as the leading kinetochore. A comparison of Mt numbers on sister kinetochores of congressing chromosomes with their direction of motion, as well as distance from their associated spindle poles, reveals that the direction of motion is not determined by kMt number or total kMt length. The same result was observed for oscillating metaphase chromosomes. These data demonstrate that the tendency of a kinetochore to move poleward is not positively correlated with the kMt number. At late prometaphase, the average number of Mts on fully congressed kinetochores is 19.7 ± 6.7 (n = 94), at late metaphase 24.3 ± 4.9 (n = 62), and at early anaphase 27.8 ± 6.3 (n = 65). Differences between these distributions are statistically significant. The increased kMt number during early anaphase, relative to late metaphase, reflects the increased kMt stability at anaphase onset. Treatment of late metaphase cells with 1 μM taxol inhibits anaphase onset, but produces the same kMt distribution as in early anaphase: 28.7 ± 7.4 (n = 54). Thus, a full complement of kMts is not sufficient to induce anaphase onset. We also measured the time course for kMt acquisition and determined an initial rate of 1.9 kMts/min. This rate accelerates up to 10-fold during the course of K-fiber maturation, suggesting an increased concentration of Mt plus ends in the vicinity of the kinetochore at late metaphase and/or cooperativity for kMt acquisition.


1994 ◽  
Vol 72 (10) ◽  
pp. 1412-1423 ◽  
Author(s):  
Kerry O'donnell

Mitosis in the wheat pathogen Tilletia caries (Basidiomycota, Tilletiales) was investigated by electron microscopy of serially sectioned, fast-frozen, freeze-substituted mitotic cells called ballistospores. A duplicated spindle pole body consisting of two identical, three-layered globular elements connected by a middle piece was attached to the extranuclear face of each nucleus at interphase. During mitosis, astral and spindle microtubules radiated from the globular elements that form the poles of an intranuclear spindle. At metaphase, chromosomes were interspersed with the nonkinetochore microtubules, and they were spread along the central two-thirds of the spindle. Each chromatid was attached to a spindle pole by a single, continuous, kinetochore microtubule. Postmitotic replication of the spindle pole body occurred during late telophase to interphase. Results from this study are presented in the form of a model of the mitotic spindle pole body cycle in Tilletia, and this model is compared with the one previously reported for Tilletia and other basidiomycetes. Key words: electron microscopy, freeze substitution, mitosis, spindle pole body, Tilletia.


1991 ◽  
Vol 100 (2) ◽  
pp. 279-288 ◽  
Author(s):  
J.R. Aist ◽  
C.J. Bayles ◽  
W. Tao ◽  
M.W. Berns

The existence, structural basis and function of astral forces that are active during anaphase B in the fungus, Nectria haematococca, were revealed by experiments performed on living cells. When one of the two asters of a mitotic apparatus was damaged, the entire mitotic apparatus migrated rapidly in the direction of the opposing astral forces, showing that the force that accelerated spindle pole body separation in earlier experiments is located in the asters. When a strong solution of the antimicrotubule drug, MBC, was applied at anaphase A, tubulin immunocytochemistry showed that both astral and spindle microtubules were destroyed completely in less than a minute. As a result, separation of the spindle pole bodies during anaphase B almost stopped. By contrast, disrupting only the spindle microtubules with a laser microbeam increased the rate of spindle pole body separation more than fourfold. Taken together, these two experiments show that the astral forces are microtubule-dependent. When only one of the two or three bundles of spindle microtubules was broken at very early anaphase B, most such diminished spindles elongated at a normal rate, whereas others elongated at an increased rate. This result suggests that only a critical mass or number of spindle microtubules needs be present for the rate of spindle elongation to be fully governed, and that astral forces can accelerate the elongation of a weakened or diminished spindle.


1977 ◽  
Vol 72 (2) ◽  
pp. 368-379 ◽  
Author(s):  
S Brenner ◽  
A Branch ◽  
S Meredith ◽  
M W Berns

Light and electron microscopy were used to study somatic cell reduction division occurring spontaneously in tetraploid populations of rat kangaroo Potorous tridactylis (PtK2) cells in vitro. Light microscopy coupled with time-lapse photography documented the pattern of reduction division which includes an anaphase-like movement of double chromatid chromosomes to opposite spindle poles followed by the organization of two separate metaphase plates and synchronous anaphase division to form four poles and four daughter nuclei. The resulting daughter cells were isolated and cloned, showing their viability, and karyotyped to determine their ploidy. Ultrastructural analysis of cells undergoing reduction consistently revealed two duplexes of centrioles (one at each of two spindle poles) and two spindle poles in each cell that lacked centrioles but with microtubules terminating in a pericentriolar-like cloud of material. These results suggest that the centriole is not essential for spindle pole formation and division and implicate the could region as a necessary component of the spindle apparatus.


1978 ◽  
Vol 76 (3) ◽  
pp. 761-766 ◽  
Author(s):  
B C Lu

The time-course study of meiosis in the fungus Coprinus cinereus (C. lagopus) by electron microscopy reveals that two monoglobular spindle pole bodies (SPB's) of prekaryogamy nuclei come together during karyogamy and are fused. The fusion SPB of postkaryogamy nucleus persists through zygotene and pachytene as evidenced by the presence of axial components and synaptonemal complexes. At early diplotene, the SPB divides. The divided SPB takes on a diglobular form, which grows in size to form two daughter SPB's. These separate and move to opposite poles at metaphase I.


1993 ◽  
Vol 123 (6) ◽  
pp. 1475-1489 ◽  
Author(s):  
D N Mastronarde ◽  
K L McDonald ◽  
R Ding ◽  
J R McIntosh

Spindle microtubules (MTs) in PtK1 cells, fixed at stages from metaphase to telophase, have been reconstructed using serial sections, electron microscopy, and computer image processing. We have studied the class of MTs that form an interdigitating system connecting the two spindle poles (interpolar MTs or ipMTs) and their relationship to the spindle MTs that attach to kinetochores (kMTs). Viewed in cross section, the ipMTs cluster with antiparallel near neighbors throughout mitosis; this bundling becomes much more pronounced as anaphase proceeds. While the minus ends of most kMTs are near the poles, those of the ipMTs are spread over half of the spindle length, with at least 50% lying > 1.5 microns from the poles. Longitudinal views of the ipMT bundles demonstrate a major rearrangement of their plus ends between mid- and late anaphase B. However, the minus ends of these MTs do not move appreciably farther from the spindle midplane, suggesting that sliding of these MTs contributes little to anaphase B. The minus ends of ipMTs are markedly clustered in the bundles of kMTs throughout anaphase A. These ends lie close to kMTs much more frequently than would be expected by chance, suggesting a specific interaction. As sister kinetochores separate and kMTs shorten, the minus ends of the kMTs remain associated with the spindle poles, but the minus ends of many ipMTs are released from the kMT bundles, allowing the spindle pole and the kMTs to move away from the ipMTs as the spindle elongates.


1982 ◽  
Vol 28 (9) ◽  
pp. 1059-1077 ◽  
Author(s):  
M.-L. Ashton ◽  
P. B. Moens

Conjugation in Schizosaccharomyces octosporus is described through the use of interference contrast microscopy, fluorescence microscopy, and electron microscopy of serial sections. At the light microscope level, mating was frequently observed to occur between cells of common ancestry. Fluorescent staining of the nuclei showed that nuclear migration occurs prior to karyogamy, and following diploidization the nucleus then migrates to the end of the cell. A brightly fluorescent spot was found at the apex of the migration nucleus. At the electron microscope level, the results showed that nuclear movement occurs in the presence of cytoplasmic microtubules that are associated with the spindle pole body, the conjugatory nuclei first fuse at or near the spindle pole bodies, and fusion of the spindle bodies occurs apparently by stacking one onto the other.


The motor innervation of cat spindles was examined in hindlimb muscles using a variety of techniques employed in light and electron microscopy. Observations were made on teased, silver preparations of 267 spindles sampled from the peroneal, flexor hallucis longus, and soleus muscles, hereafter referred to as the PER /FHL /SOL series. The y innervation . Trail endings are almost invariably present, and innervate both bag and chain muscle fibres. T rail fibres accounted for 64.6 to 74.8 % of the total fusimotor supply to samples of spindle poles in the PER/FHL /SOL series, the m ean num ber of fibres per pole varying from 2.7 to 5.0 in the different muscles, and the mean number of ramifications (areas of synaptic contact) per fibre being 3.7. By contrast, the p 2 innervation of a spindle pole generally consists of a single fibre supplying only one plate. In the above samples p 2 fibres accounted for 4.1 to 28.0% of the total fusimotor supply, and the mean number of fibres per pole varied from 0.3 to 1.2 in the different muscles. Ninety per cent of p 2 plates innervate bag fibres. The α innervation . The structure of p 1 plates as seen in both light and electron microscopy compares very closely with that of extrafusal plates. After nerve section p 1 plates degenerate at the same time as extrafusal plates, being the first of the three types of fusimotor ending to disappear. The frequency of the p x innervation is similar to that of the p 2 innervation. In the same samples of P E R /F H L /S O L spindle poles as above p x fibres accounted for 6.0 to 28.8 % of the total fusimotor supply, the mean number of fibres per pole varying from 0.25 to 2.1 in the different muscles. The majority of p 1 fibres enter a pole to terminate in one plate only. Seventy-five per cent of the plates innervate bag fibres. The three types of fusimotor ending are thus not selectively distributed to the two types of intrafusal muscle fibre. All three types of fusimotor fibre may branch within the spindle so as to innervate both bag and chain fibres. Bag fibres receive both types of plate ending as well as trail endings. Most chain fibres receive trail endings only; the rest receive either a p 1 or a p 2 plate innervation in addition, 25 % of the p 1 and 10% of the p 2 innervation being distributed to chain fibres. The significance of this nonselective innervation is interpreted as indicating that the type of contraction elicited by stimulating a fusimotor fibre depends upon the type of ending initiating it rather than upon the type of muscle fibre executing it. Reasons are given for concluding that the dynamic response is controlled via the p 1 and p 2 plates, and that the static response is controlled by the trail endings. The participation of the a fibres in mammalian fusimotor innervation, previously regarded as a vestigial feature, proved to be widespread in the muscles studied and more prevalent in fast muscles (FHL, peroneus digiti quinti) than slow (soleus). A low frequency of p 1 innervation is offset by a high frequency of p 2 (as in peroneus longus), and vice versa (as in FHL). It is unlikely that collaterals from slow a fibres innervating type B muscle fibres are wholly responsible for the high frequency of the p 1 innervation in FHL, and it is suggested that collaterals may also be derived from fast a fibres innervating type C muscle fibres. The possibility of there being some motor fibres of a conduction velocity and with an exclusively fusimotor distribution is also taken into account.


2001 ◽  
Vol 152 (3) ◽  
pp. 425-434 ◽  
Author(s):  
Michael B. Gordon ◽  
Louisa Howard ◽  
Duane A. Compton

Anchorage of microtubule minus ends at spindle poles has been proposed to bear the load of poleward forces exerted by kinetochore-associated motors so that chromosomes move toward the poles rather than the poles toward the chromosomes. To test this hypothesis, we monitored chromosome movement during mitosis after perturbation of nuclear mitotic apparatus protein (NuMA) and the human homologue of the KIN C motor family (HSET), two noncentrosomal proteins involved in spindle pole organization in animal cells. Perturbation of NuMA alone disrupts spindle pole organization and delays anaphase onset, but does not alter the velocity of oscillatory chromosome movement in prometaphase. Perturbation of HSET alone increases the duration of prometaphase, but does not alter the velocity of chromosome movement in prometaphase or anaphase. In contrast, simultaneous perturbation of both HSET and NuMA severely suppresses directed chromosome movement in prometaphase. Chromosomes coalesce near the center of these cells on bi-oriented spindles that lack organized poles. Immunofluorescence and electron microscopy verify microtubule attachment to sister kinetochores, but this attachment fails to generate proper tension across sister kinetochores. These results demonstrate that anchorage of microtubule minus ends at spindle poles mediated by overlapping mechanisms involving both NuMA and HSET is essential for chromosome movement during mitosis.


1992 ◽  
Vol 70 (3) ◽  
pp. 629-638 ◽  
Author(s):  
Kerry O'Donnell

Meiosis in the smut fungi Ustilago maydis and Ustilago avenae (Basidiomycota, Ustilaginales) was studied by electron microscopy of serial-sectioned freeze substituted basidia. At prophase I, a spindle pole body composed of two globular elements connected by a middle piece was attached to the extranuclear surface of each nucleus. Astral and spindle microtubules were initiated at each globular element at late prophase I to prometaphase I. During spindle initiation, the middle piece disappeared and interdigitating half-spindles entered the nucleoplasm, which was surrounded by discontinuous nuclear envelope together with perinuclear endoplasmic reticulum. Kinetochore pairs at metaphase I were analyzed to obtain a karyotype for each species. The meiotic spindle pole body replicational cycle is described. Key words: electron microscopy, freeze-substitution, meiosis, Ustilago, spindle pole body.


Sign in / Sign up

Export Citation Format

Share Document