Fusimotor innervation in the cat

The motor innervation of cat spindles was examined in hindlimb muscles using a variety of techniques employed in light and electron microscopy. Observations were made on teased, silver preparations of 267 spindles sampled from the peroneal, flexor hallucis longus, and soleus muscles, hereafter referred to as the PER /FHL /SOL series. The y innervation . Trail endings are almost invariably present, and innervate both bag and chain muscle fibres. T rail fibres accounted for 64.6 to 74.8 % of the total fusimotor supply to samples of spindle poles in the PER/FHL /SOL series, the m ean num ber of fibres per pole varying from 2.7 to 5.0 in the different muscles, and the mean number of ramifications (areas of synaptic contact) per fibre being 3.7. By contrast, the p 2 innervation of a spindle pole generally consists of a single fibre supplying only one plate. In the above samples p 2 fibres accounted for 4.1 to 28.0% of the total fusimotor supply, and the mean number of fibres per pole varied from 0.3 to 1.2 in the different muscles. Ninety per cent of p 2 plates innervate bag fibres. The α innervation . The structure of p 1 plates as seen in both light and electron microscopy compares very closely with that of extrafusal plates. After nerve section p 1 plates degenerate at the same time as extrafusal plates, being the first of the three types of fusimotor ending to disappear. The frequency of the p x innervation is similar to that of the p 2 innervation. In the same samples of P E R /F H L /S O L spindle poles as above p x fibres accounted for 6.0 to 28.8 % of the total fusimotor supply, the mean number of fibres per pole varying from 0.25 to 2.1 in the different muscles. The majority of p 1 fibres enter a pole to terminate in one plate only. Seventy-five per cent of the plates innervate bag fibres. The three types of fusimotor ending are thus not selectively distributed to the two types of intrafusal muscle fibre. All three types of fusimotor fibre may branch within the spindle so as to innervate both bag and chain fibres. Bag fibres receive both types of plate ending as well as trail endings. Most chain fibres receive trail endings only; the rest receive either a p 1 or a p 2 plate innervation in addition, 25 % of the p 1 and 10% of the p 2 innervation being distributed to chain fibres. The significance of this nonselective innervation is interpreted as indicating that the type of contraction elicited by stimulating a fusimotor fibre depends upon the type of ending initiating it rather than upon the type of muscle fibre executing it. Reasons are given for concluding that the dynamic response is controlled via the p 1 and p 2 plates, and that the static response is controlled by the trail endings. The participation of the a fibres in mammalian fusimotor innervation, previously regarded as a vestigial feature, proved to be widespread in the muscles studied and more prevalent in fast muscles (FHL, peroneus digiti quinti) than slow (soleus). A low frequency of p 1 innervation is offset by a high frequency of p 2 (as in peroneus longus), and vice versa (as in FHL). It is unlikely that collaterals from slow a fibres innervating type B muscle fibres are wholly responsible for the high frequency of the p 1 innervation in FHL, and it is suggested that collaterals may also be derived from fast a fibres innervating type C muscle fibres. The possibility of there being some motor fibres of a conduction velocity and with an exclusively fusimotor distribution is also taken into account.

1972 ◽  
Vol 55 (2) ◽  
pp. 368-389 ◽  
Author(s):  
James R. Aist ◽  
P. H. Williams

Mitosis in Fusarium oxysporum Schlect. was studied by light and electron microscopy. The average times required for the stages of mitosis, as determined from measurements made on living nuclei, were as follows: prophase, 70 sec; metaphase, 120 sec; anaphase, 13 sec; and telophase, 125 sec, for a total of 5.5 min. New postfixation procedures were developed specifically to preserve the fine-structure of the mitotic apparatus. Electron microscopy of mitotic nuclei revealed a fibrillo-granular, extranuclear Spindle Pole Body (SPB) at each pole of the intranuclear, microtubular spindles. Metaphase chromosomes were attached to spindle microtubules via kinetochores, which were found near the spindle poles at telophase. The still-intact, original nuclear envelope constricted around the incipient daughter nuclei during telophase.


1977 ◽  
Vol 72 (2) ◽  
pp. 368-379 ◽  
Author(s):  
S Brenner ◽  
A Branch ◽  
S Meredith ◽  
M W Berns

Light and electron microscopy were used to study somatic cell reduction division occurring spontaneously in tetraploid populations of rat kangaroo Potorous tridactylis (PtK2) cells in vitro. Light microscopy coupled with time-lapse photography documented the pattern of reduction division which includes an anaphase-like movement of double chromatid chromosomes to opposite spindle poles followed by the organization of two separate metaphase plates and synchronous anaphase division to form four poles and four daughter nuclei. The resulting daughter cells were isolated and cloned, showing their viability, and karyotyped to determine their ploidy. Ultrastructural analysis of cells undergoing reduction consistently revealed two duplexes of centrioles (one at each of two spindle poles) and two spindle poles in each cell that lacked centrioles but with microtubules terminating in a pericentriolar-like cloud of material. These results suggest that the centriole is not essential for spindle pole formation and division and implicate the could region as a necessary component of the spindle apparatus.


1990 ◽  
Vol 68 (7) ◽  
pp. 1454-1467 ◽  
Author(s):  
K. M. Fry ◽  
S. B. McIver

Light and electron microscopy were used to observe development of the lateral palatal brush in Aedes aegypti (L.) larvae. Development was sampled at 4-h intervals from second- to third-instar ecdyses. Immediately after second-instar ecdysis, the epidermis apolyses from newly deposited cuticle in the lateral palatal pennicular area to form an extensive extracellular cavity into which the fourth-instar lateral palatal brush filaments grow as cytoplasmic extensions. On reaching their final length, the filaments deposit cuticulin, inner epicuticle, and procuticle sequentially on their outer surfaces. The lateral palatal crossbars, on which the lateral palatal brush filaments insert, form after filament development is complete. At the beginning of development, the organelles involved in plasma membrane and cuticle production are located at the base and middle of the cells. As the filament rudiments grow, most rough endoplasmic reticulum, mitochondria, and Golgi apparatus move to the apex of the epidermal cells and into the filament rudiments. After formation of the lateral palatal brush filaments and lateral palatal crossbars, extensive organelle breakdown occurs. Lateral palatal brush formation is unusual in that no digestion and resorption of old endocuticle occurs prior to deposition of new cuticle. No mucopolysaccharide secretion by the lateral palatal brush epidermis was observed, nor were muscle fibres observed to attach to the lateral palatal crossbars, as has been suggested by other workers.


1997 ◽  
Vol 75 (3) ◽  
pp. 444-458 ◽  
Author(s):  
B. D. Sun ◽  
J. M. Schmidt

The structure of the antennal heart of Aedes aegypti (L.) (Diptera: Culicidae) was observed using light and electron microscopy. The antennal heart consists of several distinct regions including a single layer of columnar cells, the chamber walls, the valve, the z-body, the muscle fibres, and the connective tissue filaments. The columnar cells are structurally similar to secretory and osmoregulatory cells. Features of tendinous epidermal cells typically involved in the attachment of muscles to the cuticle can be observed in various areas of the antennal heart when it is examined as a whole. A model describing the pumping mechanism of the antennal heart in A. aegypti is presented.


The number and distribution of acetylcholine (ACh) receptors on muscle cells was studied during development of normal, paralysed and aneural embryonic rat diaphragm muscles. (i) ACh receptors initially are dispersed over the surface of rat embryo myotubes. At day 15| of gestation junctional receptor clusters (‘J-clusters’) form in a well ordered band across the midline of the diaphragm muscle; these also form in denervated and paralysed muscles. At about day 18 of gestation additional ‘EJ-clusters’ develop to either side of the midpoint of treated muscles. (ii) If a nerve terminal is present, J-clusters increase in length with time. The time course of generation of new endplates calculated from frequency distributions of J-cluster lengths accurately predicts the muscle growth curve established from muscle fibre counts. (iii) The mean length of J-clusters in paralysed muscles was greater than in controls, due to small new-formed clusters failing to appear. In muscles allowed to recover from paralysis the mean length was less, due to a preponderance of small, new-formed clusters. These observations show that development of new endplates, which is thought to reflect the development of new muscle cells, is halted in paralysed muscles, and recovery from paralysis is associated with the generation of many new endplates. (iv) J-clusters appeared, but failed to grow, in aneural muscles. In muscles denervated during the later stages of gestation, analysis of the distribution of J-cluster lengths shows that new clusters failed to appear, and existing clusters showed little or no increase in length after the time of removal of the nerve. (v) EJ-clusters form by aggregation of dispersed receptors, and their mean length increases with time. They do not appear to be stable entities, and are removed within 2 d of recovery from paralysis. In paralysed muscles, with both J-clusters and EJclusters present, only J-clusters attract nerve sprouts or become innervated. (vi) A curve is derived showing development of the total number of synaptic terminals in a muscle. This number increases during days 13-18 of gestation, reaching a peak of about 170 % of the adult value during dl8 and d l9 of gestation. There are two episodes of terminal elimination, one during days 19-21 of gestation, and another about 2 weeks postnatally. During the first postnatal week the number of terminals remains constant at about 140% of the adult number, while the average number of inputs per fibre goes down and the number of muscle fibres increases. (vii) Innervation is essential for muscle development. Motoneurons cannot regulate the number of muscle fibres by requiring a simple one-to-one relation between nerve terminal and muscle fibre, and if their role is regulatory as well as supportive of muscle development then some more complex relationship between nerve terminals and developing myotubes must be postulated.


The glio-vascular organization of the octopus brain has been studied by light and electron microscopy. The structure of the walls of the blood vessels has been described. Two types of neuroglia can be recognized, the fibrous and protoplasmic glia; also enigmatic dark cells. Most blood vessels in the neuropil are surrounded by extracellular zones containing collagen. These zones give off glio-vascular tunnels (strands) that penetrate the neuropil in a complex network. The extracellular zones and tunnels contain in addition to collagen, smooth muscle cells and fibrocytes. Glial processes surround the extracellular zones and incompletely partition them from the neuropil. The small neuronal perikarya have no glial folds around them. The medium-size cells have thin glial sheets or finger processes related to their surfaces, which may indent the cells to form small trophospongia. The large neurons of the suboesophageal lobe have complex glial sheaths interspersed with extracellular channels. Both penetrate the neurons to form complex trophospongia. A new form of extracellular material has been observed in these extracellular channels. The occurrence of trophospongia in vertebrate and invertebrate neurons may be correlated with the absence of dendrites. Special problems discussed include the nature of the trophospongial function, the question of fluid-filled extracellular zones and their possible function as lymph channels, and the presence in some of them of haemocyanin molecules identical with those in the blood vessels. Perhaps of special importance is the observation that the lobes of the octopus brain are permeated with extracellular tunnels containing smooth muscle fibres, but it still needs to be determined whether or not the muscle cells in the tunnels of the neuropil actively contract and massage the neuropil to facilitate metabolic and other exchanges.


1980 ◽  
Vol 209 (1177) ◽  
pp. 563-568 ◽  

Satellite cells were visualized in living muscle fibres of the frog. Single fibres or bundles consisting of a few fibres were isolated after treatment with collagenase, and viewed under the light microscope. Subsequent electron microscopy of identified cells confirmed that they were satellite muscle cells. Under the light microscope, satellite cells appear as fusiform cells, tapering into long fine processes usually orientated parallel to the muscle fibre axis. Horseradish peroxidase injected into the muscle fibre was not transferred to the satellite cells.


2022 ◽  
Vol 23 (2) ◽  
pp. 854
Author(s):  
Ruiyi Ren ◽  
Anne A. Humphrey ◽  
David L. Swain ◽  
Haiyan Gong

We investigated whether an inverse relationship exists between intraocular pressure (IOP) and effective filtration area (EFA) in the trabecular meshwork (TM) in a steroid-induced ocular hypertensive (SIOH) mouse model and the morphological changes associated with the reduction of EFA. C57BL/6 mice (n = 15 per group) received either 0.1% dexamethasone (DEX) or saline eye drops twice daily for five weeks. IOP was measured weekly. Fluorescent tracers were injected into the anterior chamber to label EFA at the endpoint. Injected eyes were fixed and processed for confocal microscopy. EFA in the TM was analyzed. Light and electron microscopy were performed in high- and low-tracer regions of six eyes per group. The mean IOP was ~4 mm Hg higher in DEX-treated than saline-treated control eyes (p < 0.001) at the endpoint. EFA was reduced in DEX-treated eyes compared to controls (p < 0.01) and negatively correlated with IOP (R2 = 0.38, p = 0.002). Reduced thickness of juxtacanalicular tissue (JCT) and increased abnormal extracellular matrix in the JCT were found to be associated with reduced EFA. Our data confirm the inverse relationship between EFA and IOP, suggesting that morphological changes in the JCT contribute to the reduction of EFA, thus elevating IOP in SIOH mouse eyes.


Author(s):  
Bruce R. Pachter ◽  
Arthur Eberstein

Rats treated with 20,25-diazacholesterol manifest clinical as well as physiological signs characteristic of human myotonic dystrophy. The extraocular muscles (EOMs) of such myotonic rats were shewn in a prior study to exhibit by electromyography, prolonged insertion activity, high frequency bizzare discharges, and myotonic responses, which are comparable to that observed in skeletal muscle. Light and electron microscopy of the EOMs revealed numerous fiber alterations, i.e., dense bodies, atrophic and angulated fibers, cell vacuolization, dilation and proliferation of the sarcoplasmic reticulum, mu11ilamllar membranous bodies, atypical mitochondrial clusters and disruptions, mitochondrial inclusions, excessive lipid accumulations, and myofibrillar degeneration. Many of these changes have been reported in human myotonic peripheral musculature. The most susceptible fiber populations in the EOMs were found to be the pale, intermediate, and red singly-innervated fibers of the global region; the pale fibers were the most affected.


1993 ◽  
Vol 123 (6) ◽  
pp. 1475-1489 ◽  
Author(s):  
D N Mastronarde ◽  
K L McDonald ◽  
R Ding ◽  
J R McIntosh

Spindle microtubules (MTs) in PtK1 cells, fixed at stages from metaphase to telophase, have been reconstructed using serial sections, electron microscopy, and computer image processing. We have studied the class of MTs that form an interdigitating system connecting the two spindle poles (interpolar MTs or ipMTs) and their relationship to the spindle MTs that attach to kinetochores (kMTs). Viewed in cross section, the ipMTs cluster with antiparallel near neighbors throughout mitosis; this bundling becomes much more pronounced as anaphase proceeds. While the minus ends of most kMTs are near the poles, those of the ipMTs are spread over half of the spindle length, with at least 50% lying &gt; 1.5 microns from the poles. Longitudinal views of the ipMT bundles demonstrate a major rearrangement of their plus ends between mid- and late anaphase B. However, the minus ends of these MTs do not move appreciably farther from the spindle midplane, suggesting that sliding of these MTs contributes little to anaphase B. The minus ends of ipMTs are markedly clustered in the bundles of kMTs throughout anaphase A. These ends lie close to kMTs much more frequently than would be expected by chance, suggesting a specific interaction. As sister kinetochores separate and kMTs shorten, the minus ends of the kMTs remain associated with the spindle poles, but the minus ends of many ipMTs are released from the kMT bundles, allowing the spindle pole and the kMTs to move away from the ipMTs as the spindle elongates.


Sign in / Sign up

Export Citation Format

Share Document