scholarly journals Meiosis in Coprinus. VIII. A time-course study of the fusion and division of the spindle pole body during meiosis.

1978 ◽  
Vol 76 (3) ◽  
pp. 761-766 ◽  
Author(s):  
B C Lu

The time-course study of meiosis in the fungus Coprinus cinereus (C. lagopus) by electron microscopy reveals that two monoglobular spindle pole bodies (SPB's) of prekaryogamy nuclei come together during karyogamy and are fused. The fusion SPB of postkaryogamy nucleus persists through zygotene and pachytene as evidenced by the presence of axial components and synaptonemal complexes. At early diplotene, the SPB divides. The divided SPB takes on a diglobular form, which grows in size to form two daughter SPB's. These separate and move to opposite poles at metaphase I.

2006 ◽  
Vol 173 (6) ◽  
pp. 867-877 ◽  
Author(s):  
Sam Li ◽  
Alan M. Sandercock ◽  
Paul Conduit ◽  
Carol V. Robinson ◽  
Roger L. Williams ◽  
...  

Centrins are calmodulin-like proteins present in centrosomes and yeast spindle pole bodies (SPBs) and have essential functions in their duplication. The Saccharomyces cerevisiae centrin, Cdc31p, binds Sfi1p on multiple conserved repeats; both proteins localize to the SPB half-bridge, where the new SPB is assembled. The crystal structures of Sfi1p–centrin complexes containing several repeats show Sfi1p as an α helix with centrins wrapped around each repeat and similar centrin–centrin contacts between each repeat. Electron microscopy (EM) shadowing of an Sfi1p–centrin complex with 15 Sfi1 repeats and 15 centrins bound showed filaments 60 nm long, compatible with all the Sfi1 repeats as a continuous α helix. Immuno-EM localization of the Sfi1p N and C termini showed Sfi1p–centrin filaments spanning the length of the half-bridge with the Sfi1p N terminus at the SPB. This suggests a model for SPB duplication where the half-bridge doubles in length by association of the Sfi1p C termini, thereby providing a new Sfi1p N terminus to initiate SPB assembly.


1992 ◽  
Vol 70 (3) ◽  
pp. 629-638 ◽  
Author(s):  
Kerry O'Donnell

Meiosis in the smut fungi Ustilago maydis and Ustilago avenae (Basidiomycota, Ustilaginales) was studied by electron microscopy of serial-sectioned freeze substituted basidia. At prophase I, a spindle pole body composed of two globular elements connected by a middle piece was attached to the extranuclear surface of each nucleus. Astral and spindle microtubules were initiated at each globular element at late prophase I to prometaphase I. During spindle initiation, the middle piece disappeared and interdigitating half-spindles entered the nucleoplasm, which was surrounded by discontinuous nuclear envelope together with perinuclear endoplasmic reticulum. Kinetochore pairs at metaphase I were analyzed to obtain a karyotype for each species. The meiotic spindle pole body replicational cycle is described. Key words: electron microscopy, freeze-substitution, meiosis, Ustilago, spindle pole body.


2001 ◽  
Vol 183 (7) ◽  
pp. 2372-2375 ◽  
Author(s):  
Andreas Wesp ◽  
Susanne Prinz ◽  
Gerald R. Fink

ABSTRACT During sporulation in diploid Saccharomyces cerevisiae, spindle pole bodies acquire the so-called meiotic plaque, a prerequisite for spore formation. Mpc70p is a component of the meiotic plaque and is thus essential for spore formation. We show here that MPC70/mpc70 heterozygous strains most often produce two spores instead of four and that these spores are always nonsisters. In wild-type strains, Mpc70p localizes to all four spindle pole bodies, whereas in MPC70/mpc70 strains Mpc70p localizes to only two of the four spindle pole bodies, and these are always nonsisters. Our data can be explained by conservative spindle pole body distribution in which the two newly synthesized meiosis II spindle pole bodies of MPC70/mpc70 strains lack Mpc70p.


2000 ◽  
Vol 113 (3) ◽  
pp. 545-554 ◽  
Author(s):  
S. Ikemoto ◽  
T. Nakamura ◽  
M. Kubo ◽  
C. Shimoda

Spindle pole bodies in the fission yeast Schizosaccharomyces pombe are required during meiosis, not only for spindle formation but also for the assembly of forespore membranes. The spo15 mutant is defective in the formation of forespore membranes, which develop into spore envelopes. The spo15(+)gene encodes a protein with a predicted molecular mass of 223 kDa, containing potential coiled-coil regions. The spo15 gene disruptant was not lethal, but was defective in spore formation. Northern and western analyses indicated that spo15(+) was expressed not only in meiotic cells but also in vegetative cells. When the spo15-GFP fusion gene was expressed by the authentic spo15 promoter during vegetative growth and sporulation, the fusion protein colocalized with Sad1p, which is a component of spindle pole bodies. Meiotic divisions proceeded in spo15delta cells with kinetics similar to those in wild-type cells. In addition, the morphology of the mitotic and meiotic spindles and the nuclear segregation were normal in spo15delta. Intriguingly, transformation of spindle pole bodies from a punctate to a crescent form prior to forespore membrane formation was not observed in spo15delta cells. We conclude that Spo15p is associated with spindle pole bodies throughout the life cycle and plays an indispensable role in the initiation of spore membrane formation.


1986 ◽  
Vol 64 (6) ◽  
pp. 1221-1223 ◽  
Author(s):  
Blair J. Goates ◽  
James A. Hoffmann

Fusion of double-structured, interphase spindle pole bodies (SPBs) occurred before nuclear fusion in heterokaryotic secondary sporidia. The SPBs of two separate nuclei were juxtaposed with their long axes perpendicular to each other. Also, SPBs were observed oriented with their long axes parallel and fused to each other at both ends. Fusion apparently continued toward the midportion of the SPBs. Nuclei were observed joined together in a narrow region. These nuclei appeared to share a single SPB that was located opposite to a protuberance on both nuclei. Following fusion, the SPB apparently returned to an interphase structure.


1973 ◽  
Vol 19 (11) ◽  
pp. 1389-1392 ◽  
Author(s):  
Lynn Rooney ◽  
Peter B. Moens

Photographic records of complete serial sections of asci in different stages of sporulation show that one of the four nuclear lobes produced during meiosis in the ascus of the yeast Wickerhamia fluorescens has a complex spindle-pole body, which is the site from where the presumptive ascospore wall, or prospore wall, develops and eventually surrounds the ascospore nucleus and associated cytoplasm. The three remaining nuclei develop spindle-pole bodies and prospore walls to lesser and varying degrees. With few exceptions, all three degenerate. The outer membrane of the prospore wall forms a fold, or rim, on the outside of the spore. Thickening of the spore wall takes place first in the asymmetric ring, then around the spore body, and finally at the site where the nucleus is associated with the wall. It is shown that ascospore delimitation in W. fluorescens and Saccharomyces cerevisiae are similar to each other, and that it differs from the type observed in a number of Euascomycetes.


1972 ◽  
Vol 55 (2) ◽  
pp. 368-389 ◽  
Author(s):  
James R. Aist ◽  
P. H. Williams

Mitosis in Fusarium oxysporum Schlect. was studied by light and electron microscopy. The average times required for the stages of mitosis, as determined from measurements made on living nuclei, were as follows: prophase, 70 sec; metaphase, 120 sec; anaphase, 13 sec; and telophase, 125 sec, for a total of 5.5 min. New postfixation procedures were developed specifically to preserve the fine-structure of the mitotic apparatus. Electron microscopy of mitotic nuclei revealed a fibrillo-granular, extranuclear Spindle Pole Body (SPB) at each pole of the intranuclear, microtubular spindles. Metaphase chromosomes were attached to spindle microtubules via kinetochores, which were found near the spindle poles at telophase. The still-intact, original nuclear envelope constricted around the incipient daughter nuclei during telophase.


1990 ◽  
Vol 111 (5) ◽  
pp. 1913-1927 ◽  
Author(s):  
M P Rout ◽  
J V Kilmartin

Yeast spindle pole bodies (SPBs) with attached nuclear microtubles were enriched approximately 600-fold from yeast cell extracts. 14 mAbs prepared against this enriched SPB fraction define at least three components of the SPB and spindle. Immunofluorescent staining of yeast cells showed that throughout the cell cycle two of the components (110 and 90 kD) were localized exclusively to the SPB region, and the other (80 kD) was localized both to the SPB region and to particulate dots in short spindles. Immunoelectron microscopy confirmed and extended most of these findings. Thus the 110-kD component was localized to a layer in the SPB just to the nuclear side of the plane of the inner nuclear membrane. The 90-kD component was localized in a layer across the cytoplasmic face of intact SPBs, and, in SPBs where nuclear microtubules were removed by extraction with DEAE-dextran, the 90-kD component was also found in an inner nuclear layer close to where spindle microtubules emerge. In intact SPBs with attached nuclear microtubules the anit-80-kD mAb labels microtubules, particularly those close to the SPB. These results begin to provide a preliminary molecular map of the SPB and should also enable the corresponding genes to be isolated.


1994 ◽  
Vol 72 (10) ◽  
pp. 1412-1423 ◽  
Author(s):  
Kerry O'donnell

Mitosis in the wheat pathogen Tilletia caries (Basidiomycota, Tilletiales) was investigated by electron microscopy of serially sectioned, fast-frozen, freeze-substituted mitotic cells called ballistospores. A duplicated spindle pole body consisting of two identical, three-layered globular elements connected by a middle piece was attached to the extranuclear face of each nucleus at interphase. During mitosis, astral and spindle microtubules radiated from the globular elements that form the poles of an intranuclear spindle. At metaphase, chromosomes were interspersed with the nonkinetochore microtubules, and they were spread along the central two-thirds of the spindle. Each chromatid was attached to a spindle pole by a single, continuous, kinetochore microtubule. Postmitotic replication of the spindle pole body occurred during late telophase to interphase. Results from this study are presented in the form of a model of the mitotic spindle pole body cycle in Tilletia, and this model is compared with the one previously reported for Tilletia and other basidiomycetes. Key words: electron microscopy, freeze substitution, mitosis, spindle pole body, Tilletia.


Sign in / Sign up

Export Citation Format

Share Document