spindle microtubules
Recently Published Documents


TOTAL DOCUMENTS

435
(FIVE YEARS 89)

H-INDEX

72
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Shoukai Yu

The spindle and kinetochore-associated complex is composed of three members: SKA1, SKA2, and SKA3. It is necessary for stabilizing spindle microtubules attaching to kinetochore (KT) in the middle stage of mitosis. The SKA complex is associated with poor prognosis in several human cancers. However, the role of SKA complex in rare malignant diseases, such as gliomas, has not been fully investigated. We investigated several databases, including Oncomine, UALCAN, and cBioPortal to explore the expression profile and prognostic significance of SKA complex in patients with gliomas. Gene ontology and Kyoto Encyclopedia of Genes and Genome pathways were used to analyze the potential enriched pathways. The genes co-expressed with SKA complex were identified and used for developing a protein-protein interaction (PPI) network using the STRING database. We found a significant overexpression of the mRNA levels of SKA1, SKA2, and SKA3 in patients with glioma patients. Higher expression of SKA1 and SKA3, but not SKA2, was significantly correlated with shorter overall survival of patients with glioma. In glioma, SKA complex was found to be involved in nuclear division, chromosome segregation, and DNA replication. The results of PPI network identified 10 hub genes (CCNB2, UBE2C, BUB1B, TPX2, CCNA2, CCNB1, MELK, TOP2A, PBK, and KIF11), all of which were overexpressed and negatively associated with prognosis of patients with glioma. In conclusion, our study sheds new insights into the biological role and prognostic significance of SKA complex in glioma.


2022 ◽  
Vol 221 (3) ◽  
Author(s):  
Sophia M. Hirsch ◽  
Frances Edwards ◽  
Mimi Shirasu-Hiza ◽  
Julien Dumont ◽  
Julie C. Canman

Contractile ring constriction during cytokinesis is thought to compact central spindle microtubules to form the midbody, an antiparallel microtubule bundle at the intercellular bridge. In Caenorhabditis elegans, central spindle microtubule assembly requires targeting of the CLASP family protein CLS-2 to the kinetochores in metaphase and spindle midzone in anaphase. CLS-2 targeting is mediated by the CENP-F–like HCP-1/2, but their roles in cytokinesis and midbody assembly are not known. We found that although HCP-1 and HCP-2 mostly function cooperatively, HCP-1 plays a more primary role in promoting CLS-2–dependent central spindle microtubule assembly. HCP-1/2 codisrupted embryos did not form central spindles but completed cytokinesis and formed functional midbodies capable of supporting abscission. These central spindle–independent midbodies appeared to form via contractile ring constriction–driven bundling of astral microtubules at the furrow tip. This work suggests that, in the absence of a central spindle, astral microtubules can support midbody assembly and that midbody assembly is more predictive of successful cytokinesis than central spindle assembly.


2022 ◽  
Author(s):  
Gabriel Cavin-Meza ◽  
Timothy J. Mullen ◽  
Ian D. Wolff ◽  
Emily R. Czajkowski ◽  
Nikita Santosh Divekar ◽  
...  

During mitosis, centrosomes serve as microtubule organizing centers that guide the formation of a bipolar spindle. However, oocytes of many species lack centrosomes; how meiotic spindles establish and maintain these acentrosomal poles remains poorly understood. Here, we show that the microtubule polymerase ZYG-9ch-TOG is required to maintain acentrosomal pole integrity in C. elegans oocyte meiosis; following acute depletion of ZYG-9 from pre-formed spindles, the poles split apart and an unstable multipolar structure forms. Depletion of TAC-1, a protein known to interact with ZYG-9 in mitosis, caused loss of proper ZYG-9 localization and similar spindle phenotypes, further demonstrating that ZYG-9 is required for pole integrity. However, depletion of ZYG-9 surprisingly did not affect the assembly or stability of monopolar spindles, suggesting that ZYG-9 is not required for acentrosomal pole structure per se. Moreover, fluorescence recovery after photobleaching (FRAP) revealed that ZYG-9 turns over rapidly at acentrosomal poles, displaying similar turnover dynamics to tubulin itself, suggesting that ZYG-9 does not play a static structural role at poles. Together, these data support a global role for ZYG-9 in regulating the stability of bipolar spindles and demonstrate that the maintenance of acentrosomal poles requires factors beyond those acting to organize the pole structure itself.


Author(s):  
Evgeny Bakin ◽  
Fatih Sezer ◽  
Aslıhan Özbilen ◽  
Irem Kilic ◽  
Buket Uner ◽  
...  

Apomictic plants (reproducing via asexual seeds), unlike sexual individuals, avoid meiosis and egg cell fertilization. Consequently, apomixis is very important for fixing maternal genotypes in the next plant generations. Despite the progress in the study of apomixis, molecular and genetic regulation of the latter remains poorly understood. So far APOLLO (Aspartate Glutamate Aspartate Aspartate histidine exonuclease) is one of the very few described genes associated with apomixis in Boechera species. The centromere-specific histone H3 variant encoded by CENH3 gene is essential for cell division. Mutations in CENH3 disrupt chromosome segregation during mitosis and meiosis since the attachment of spindle microtubules to a mutated form of the CENH3 histone fails. This paper presents in silico characteristic of APOLLO and CENH3 genes, which may affect apomixis. Also, we characterize the structure of CENH3, study expression levels of APOLLO and CENH3 in gynoecium/siliques of the natural diploid apomictic and sexual Boechera species at the stages of before and after fertilization. While CENH3 was a single copy gene in all Boechera species, the APOLLO gene have several polymorphic alleles associated with sexual and apomictic reproduction in the Boechera genera. Expression of the APOLLO apo-allele during meiosis was upregulated in gynoecium of apomict B. divaricarpa downregulating after meiosis until 4th day after pollination (DAP). On the 5th DAP, expression in apomictic siliques increased again. In sexual B. stricta gynoecium and siliques APOLLO apo-allele did not express. Expression of the APOLLO sex-allele during and after meiosis in gynoecium of sexual plants was several times higher than that in apomictic gynoecium. However, after pollination the sex-allele was downregulated in sexual siliques to the level of apomicts and increased sharply on the 5th DAP, while in apomictic siliques it almost did not express. At the meiotic stage, the expression level of CENH3 in the gynoecium of apomicts was two times lower than that of the sexual Boechera, decreasing in both species after meiosis and keep remaining very low in siliques of both species for several days after artificial pollination until the 4th DAP, when the expression level raised in sexual B. stricta siliques exceeding 5 times the level in apomictic B. divaricarpa siliques. We also discuss polymorphism and phylogeny of the APOLLO and CENH3 genes.


2021 ◽  
Author(s):  
Konstanty Cieslinski ◽  
Yu-Le Wu ◽  
Lisa Neechyporenko ◽  
Sarah Janice Hoerner ◽  
Duccio Conti ◽  
...  

Proper chromosome segregation is crucial for cell division. In eukaryotes, this is achieved by the kinetochore, an evolutionarily conserved multi-protein complex that physically links the DNA to spindle microtubules, and takes an active role in monitoring and correcting erroneous spindle-chromosome attachments. Our mechanistic understanding of these functions, and how they ensure an error-free outcome of mitosis, is still limited, partly because we lack a comprehensive understanding of the kinetochore structure in the cell. In this study, we use single molecule localization microscopy to visualize individual kinetochore complexes in situ in budding yeast. For all major kinetochore proteins, we measured abundance and position within the metaphase kinetochore. Based on this comprehensive dataset, we propose a quantitative model of the budding yeast kinetochore. While confirming many aspects of previous reports based on bulk imaging of kinetochores, our results present a somewhat different but unifying model of the inner kinetochore. We find that the centromere-specialized histone Cse4 is present in more than two copies per kinetochore along with its binding partner Mif2.


2021 ◽  
Author(s):  
Miquel Rosas Salvans ◽  
Renaldo Sutanto ◽  
Pooja Suresh ◽  
Sophie Dumont

The kinetochore links chromosomes to spindle microtubules to drive chromosome segregation at cell division. While we know nearly all mammalian kinetochore proteins, how these give rise to the strong yet dynamic microtubule attachments required for function remains poorly understood. Here, we focus on the Astrin-SKAP complex, which localizes to bioriented kinetochores and is essential for chromosome segregation, but whose mechanical role is unclear. Live imaging reveals that SKAP depletion dampens movement and decreases coordination of metaphase sister kinetochores, and increases tension between them. Using laser ablation to isolate kinetochores bound to polymerizing vs depolymerizing microtubules, we show that without SKAP kinetochores move slower on both polymerizing and depolymerizing microtubules, and that more force is needed to rescue microtubules to polymerize. Thus, in contrast to previously described kinetochore proteins that increase grip on microtubules under force, Astrin-SKAP reduces grip, increasing attachment dynamics and force responsiveness and reducing friction. Together, our findings suggest a model where the Astrin-SKAP complex effectively "lubricates" correct, bioriented attachments to help preserve them.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dalileh Nabi ◽  
Hauke Drechsler ◽  
Johannes Pschirer ◽  
Franz Korn ◽  
Nadine Schuler ◽  
...  

AbstractProper chromosome segregation is essential to avoid aneuploidy, yet this process fails with increasing age in mammalian oocytes. Here we report a role for the scarcely described protein CENP-V in oocyte spindle formation and chromosome segregation. We show that depending on the oocyte maturation state, CENP-V localizes to centromeres, to microtubule organizing centers, and to spindle microtubules. We find that Cenp-V−/− oocytes feature severe deficiencies, including metaphase I arrest, strongly reduced polar body extrusion, increased numbers of mis-aligned chromosomes and aneuploidy, multipolar spindles, unfocused spindle poles and loss of kinetochore spindle fibres. We also show that CENP-V protein binds, diffuses along, and bundles microtubules in vitro. The spindle assembly checkpoint arrests about half of metaphase I Cenp-V−/− oocytes from young adults only. This finding suggests checkpoint weakening in ageing oocytes, which mature despite carrying mis-aligned chromosomes. Thus, CENP-V is a microtubule bundling protein crucial to faithful oocyte meiosis, and Cenp-V−/− oocytes reveal age-dependent weakening of the spindle assembly checkpoint.


2021 ◽  
Author(s):  
Stephen M Hinshaw ◽  
Yun Quan ◽  
Jiaxi Cai ◽  
Ann Zhou ◽  
Huilin Zhou

Kinetochores control eukaryotic chromosome segregation by connecting chromosomal centromeres to spindle microtubules. Duplication of centromeric DNA necessitates kinetochore disassembly and subsequent reassembly on the nascent sisters. To search for a regulatory mechanism that controls the earliest steps of kinetochore assembly, we studied Mif2/CENP-C, an essential basal component. We found that Polo-like kinase (Cdc5) and Dbf4-dependent kinase (DDK) phosphorylate the conserved PEST region of Mif2/CENP-C and that this phosphorylation directs inner kinetochore assembly. Mif2 phosphorylation promotes kinetochore assembly in a reconstituted biochemical system, and it strengthens Mif2 localization at centromeres in cells. Disrupting one or more phosphorylation sites in the Mif2-PEST region progressively impairs cellular fitness and sensitizes cells to microtubule poisons. The most severe Mif2-PEST mutations are lethal in cells lacking otherwise non-essential Ctf19 complex factors. These data suggest that multi-site phosphorylation of Mif2/CENP-C is a robust switch that controls inner kinetochore assembly, ensuring accurate chromosome segregation.


2021 ◽  
Author(s):  
Zhiqun Li ◽  
Yifan Zhao ◽  
Xuetong Cheng ◽  
Bo Kong ◽  
Yaru Sang ◽  
...  

Abstract High temperature can induce the production of 2n gametes and aborted pollen during microsporogenesis in Populus canescens. However, the mechanism by which high temperature induces pollen abortion remains unknown. Here, pollen abortion was induced by exposing male flower buds of P. canescens to 38 and 41 °C; pollen morphology, meiotic abnormalities, defects of the meiotic microtubular cytoskeleton, and tapetum development were characterized, and expression analysis of the Actin gene was conducted. We found that the dominant meiotic stage, temperature, and duration of treatment significantly affected the percentage of high temperature-induced aborted pollen. Damaged spindle microtubules and depolymerized microtubular cytoskeletons were observed, which resulted in many lagging chromosomes at anaphase Ⅰ and Ⅱ, as well as aneuploid male gametes and micronuclei, generating aborted pollen grains. Tapetum disintegration was also delayed. However, the anther dehisced normally, and some viable pollen grains were released, suggesting that the delayed degradation of the tapetum was not responsible for pollen abortion. A significant reduction in PtActin gene expression was detected in treated cells, indicating that spindle actin was disrupted. The spindle actin appeared to protect cells against chromosome segregation errors during meiosis.


Author(s):  
Manjuan Zhang ◽  
Fengrui Yang ◽  
Wenwen Wang ◽  
Xiwei Wang ◽  
Dongmei Wang ◽  
...  

Abstract Chromosome segregation in mitosis is orchestrated by the dynamic interactions between the kinetochore and spindle microtubules. Our recent studies show that mitotic motor CENP-E cooperates with SKAP and forms a link between kinetochore core MIS13 complex and spindle microtubule plus-ends to achieve accurate chromosome alignment in mitosis. However, it remains elusive how SKAP regulates kinetochore attachment from lateral association to end-on attachment during metaphase alignment. Here, we identify a novel interaction between Aurora B and SKAP that orchestrates accurate interaction between the kinetochore and dynamic spindle microtubules. Interestingly, SKAP spontaneously phase-separates in vitro via weak, multivalent interactions into droplets with fast internal dynamics. SKAP and Aurora B form heterogeneous coacervates in vitro, which recapitulate the dynamics and behavior of SKAP comets in vivo. Importantly, SKAP interaction with Aurora B via phase separation is essential for accurate chromosome segregation and alignment. Based on those findings, we reason that SKAP–Aurora B interaction via phase separation constitutes a dynamic pool of Aurora B activity during the lateral to end-on conversion of kinetochore–microtubule attachments to achieve faithful cell division.


Sign in / Sign up

Export Citation Format

Share Document