mitotic spindle pole
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 2)

H-INDEX

12
(FIVE YEARS 1)

2020 ◽  
Author(s):  
Kenta Tsuchiya ◽  
Hisato Hayashi ◽  
Momoko Nishina ◽  
Masako Okumura ◽  
Yoshikatsu Sato ◽  
...  

2019 ◽  
Vol 29 (18) ◽  
pp. 3072-3080.e5 ◽  
Author(s):  
Simon Gemble ◽  
Anthony Simon ◽  
Carole Pennetier ◽  
Marie Dumont ◽  
Solène Hervé ◽  
...  

Open Biology ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 170202 ◽  
Author(s):  
Sirong Ou ◽  
Mei-Hua Tan ◽  
Ting Weng ◽  
HoiYeung Li ◽  
Cheng-Gee Koh

Abnormal centrosome number and function have been implicated in tumour development. LIM kinase1 (LIMK1), a regulator of actin cytoskeleton dynamics, is found to localize at the mitotic centrosome. However, its role at the centrosome is not fully explored. Here, we report that LIMK1 depletion resulted in multi-polar spindles and defocusing of centrosomes, implicating its involvement in the regulation of mitotic centrosome integrity. LIMK1 could influence centrosome integrity by modulating centrosomal protein localization at the spindle pole. Interestingly, dynein light intermediate chains (LICs) are able to rescue the defects observed in LIMK1-depleted cells. We found that LICs are potential novel interacting partners and substrates of LIMK1 and that LIMK1 phosphorylation regulates cytoplasmic dynein function in centrosomal protein transport, which in turn impacts mitotic spindle pole integrity.


2016 ◽  
Vol 27 (11) ◽  
pp. 1753-1763 ◽  
Author(s):  
Hirohisa Masuda ◽  
Takashi Toda

In fission yeast, γ-tubulin ring complex (γTuRC)–specific components Gfh1GCP4, Mod21GCP5, and Alp16GCP6 are nonessential for cell growth. Of these deletion mutants, only alp16Δ shows synthetic lethality with temperature-sensitive mutants of Mzt1MOZART1, a component of the γTuRC required for recruitment of the complex to microtubule-organizing centers. γ-Tubulin small complex levels at mitotic spindle pole bodies (SPBs, the centrosome equivalent in fungi) and microtubule levels for preanaphase spindles are significantly reduced in alp16Δ cells but not in gfh1Δ or mod21Δ cells. Furthermore, alp16Δ cells often form monopolar spindles and frequently lose a minichromosome when the spindle assembly checkpoint is inactivated. Alp16GCP6 promotes Mzt1-dependent γTuRC recruitment to mitotic SPBs and enhances spindle microtubule assembly in a manner dependent on its expression levels. Gfh1GCP4 and Mod21GCP5 are not required for Alp16GCP6-dependent γTuRC recruitment. Mzt1 has an additional role in the activation of the γTuRC for spindle microtubule assembly. The ratio of Mzt1 to γTuRC levels for preanaphase spindles is higher than at other stages of the cell cycle. Mzt1 overproduction enhances spindle microtubule assembly without affecting γTuRC levels at mitotic SPBs. We propose that Alp16GCP6 and Mzt1 act synergistically for efficient bipolar spindle assembly to ensure faithful chromosome segregation.


Cell Cycle ◽  
2013 ◽  
Vol 12 (16) ◽  
pp. 2643-2655 ◽  
Author(s):  
Adam M Corrigan ◽  
Roshan L Shrestha ◽  
Ihsan Zulkipli ◽  
Noriko Hiroi ◽  
Yingjun Liu ◽  
...  

2012 ◽  
Vol 196 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Emanuele Roscioli ◽  
Laura Di Francesco ◽  
Alessio Bolognesi ◽  
Maria Giubettini ◽  
Serena Orlando ◽  
...  

Importin-β is the main vector for interphase nuclear protein import and plays roles after nuclear envelope breakdown. Here we show that importin-β regulates multiple aspects of mitosis via distinct domains that interact with different classes of proteins in human cells. The C-terminal region (which binds importin-α) inhibits mitotic spindle pole formation. The central region (harboring nucleoporin-binding sites) regulates microtubule dynamic functions and interaction with kinetochores. Importin-β interacts through this region with NUP358/RANBP2, which in turn binds SUMO-conjugated RANGAP1 in nuclear pores. We show that this interaction continues after nuclear pore disassembly. Overexpression of importin-β, or of the nucleoporin-binding region, inhibited RANGAP1 recruitment to mitotic kinetochores, an event that is known to require microtubule attachment and the exportin CRM1. Co-expressing either importin-β–interacting RANBP2 fragments, or CRM1, restored RANGAP1 to kinetochores and rescued importin-β–dependent mitotic dynamic defects. These results reveal previously unrecognized importin-β functions at kinetochores exerted via RANBP2 and opposed by CRM1.


Traffic ◽  
2011 ◽  
Vol 12 (7) ◽  
pp. 854-866 ◽  
Author(s):  
Andrea E. Knowlton ◽  
Heather M. Brown ◽  
Theresa S. Richards ◽  
Lauren A. Andreolas ◽  
Rahul K. Patel ◽  
...  

2011 ◽  
Vol 10 (1) ◽  
pp. 131 ◽  
Author(s):  
Italia A Asteriti ◽  
Maria Giubettini ◽  
Patrizia Lavia ◽  
Giulia Guarguaglini

2010 ◽  
Vol 21 (6) ◽  
pp. 897-904 ◽  
Author(s):  
Jorge Z. Torres ◽  
Kenneth H. Ban ◽  
Peter K. Jackson

In early mitosis, the END (Emi1/NuMA/Dynein-dynactin) network anchors the anaphase-promoting complex/cyclosome (APC/C) to the mitotic spindle and poles. Spindle anchoring restricts APC/C activity, thereby limiting the destruction of spindle-associated cyclin B and ensuring maintenance of spindle integrity. Emi1 binds directly to hypophosphorylated APC/C, linking the APC/C to the spindle via NuMA. However, whether the phosphorylation state of the APC/C is important for its association with the spindle and what kinases and phosphatases are necessary for regulating this event remain unknown. Here, we describe the regulation of APC/C-mitotic spindle pole association by phosphorylation. We find that only hypophosphorylated APC/C associates with microtubule asters, suggesting that phosphatases are important. Indeed, a specific form of PPP2 (CA/R1A/R2B) binds APC/C, and PPP2 activity is necessary for Cdc27 dephosphorylation. Screening by RNA interference, we find that inactivation of CA, R1A, or R2B leads to delocalization of APC/C from spindle poles, early mitotic spindle defects, a failure to congress chromosomes, and decreased levels of cyclin B on the spindle. Consistently, inhibition of cyclin B/Cdk1 activity increased APC/C binding to microtubules. Thus, cyclin B/Cdk1 and PPP2 regulate the dynamic association of APC/C with spindle poles in early mitosis, a step necessary for proper spindle formation.


Sign in / Sign up

Export Citation Format

Share Document