scholarly journals Cell surface distribution and intracellular fate of asialoglycoproteins: a morphological and biochemical study of isolated rat hepatocytes and monolayer cultures

1982 ◽  
Vol 92 (3) ◽  
pp. 634-647 ◽  
Author(s):  
PL Zeitlin ◽  
AL Hubbard

A combination of biochemistry and morphology was used to demonstrate that more than 95 percent of the isolated rat hepatocytes prepared by collagenase dissociation of rat livers retained the pathway for receptor-mediated endocytosis of asialoglycoproteins (ASGPs). Maximal specific binding of (125)I-asialoorosomucoid ((125)I-ASOR) to dissociated hepatocytes at 5 degrees C (at which temperature no internalization occurred) averaged 100,000-400,000 molecules per cell. Binding, uptake, and degredation of (125)I- ASOR at 37 degrees C occurred at a rate of 1 x 10(6) molecules per cell over 2 h. Light and electron microscopic autoradiography (LM- and EM-ARG) of (125)I-ASOR were used to visualize the surface binding sites at 5 degrees C and the intracellular pathway at 37 degrees C. In the EM-ARG experiments, ARG grains corresponding to (125)I-ASOR were distributed randomly over the cell surface at 5 degrees C but over time at 37 degrees C were concentrated in the lysosome region. Cytochemical detection of an ASOR-horseradish peroxidase conjugate (ASOR-HRP) at the ultrastructural level revealed that at 5 degrees C this specific ASGP tracer was concentrated in pits at the cell surface as well as diffusely distributed along the rest of the plasma membrane. Such a result indicates that redistribution of ASGP surface receptors had occurred. Because the number of surface binding sites of (125)I-ASOR varied among cell preparations, the effect of collagenase on (125)I-ASOR binding was examined. When collagenase-dissociated hepatocytes were re-exposed to collagenase at 37 degrees C, 10-50 percent of control binding was observed. However, by measuring the extent of (125)I-ASOR binding at 5 degrees C in the same cell population before and after collagenase dissociation, little reduction in the number of ASGP surface receptors was found. Therefore, the possibility that the time and temperature of the cell isolations allowed recovery of cell surface receptors following collagenase exposure was tested. Freshly isolated cells, dissociated cells that were re-exposed to collagenase, and perfused livers exposed to collagenase without a Ca(++)-free pre-perfusion, were found to bind 110-240 percent more(125)I-ASOR after 1 h at 37 degrees C that they did at 0 time. This recovery of surface ASGP binding activity occurred in the absence of significant protein synthesis (i.e., basal medium or 1 mM cycloheximide). Suspensions of isolated, unpolarized hepatocytes were placed in monolayer culture for 24 h and confluent cells were demonstrated to reestablish morphologically distinct plasma membrane regions analogous to bile canalicular, lateral, and sinusoidal surfaces in vivo. More than 95 percent of these cells maintained the capacity to bind, internalize, and degrade (125)I-ASOR at levels comparable to those of the freshly isolated population. ASOR-HRP (at 5 degrees C) was specifically bound to all plasma membrane surfaces of repolarized hepatocytes (cultured for 24 h) except those lining bile canalicular-like spaces. Thus, both isolated, unpolarized hepatocytes and cells cultured under conditions that promote morphological reestablishment of polarity maintain the pathway for receptor- mediated endocytosis of ASGPs.

1997 ◽  
Vol 152 (3) ◽  
pp. 407-412 ◽  
Author(s):  
M Montiel ◽  
M C Caro ◽  
E Jiménez

Angiotensin II (Ang II) provokes rapid internalisation of its receptor from plasma membranes in isolated rat hepatocytes. After 10 min stimulation with Ang II, plasma membrane lost about 60% of its 125I-Ang II-binding capacity. Internalisation was blocked by phenylarsine oxide (PhAsO), whereas okadaic acid, which markedly reduced the sustained phase of calcium mobilization, did not have a preventive effect on Ang II–receptor complex sequestration. These data suggest that Ang II receptor internalisation is probably independent of a phosphorylation/dephosphorylation cycle of critical serine/threonine residues in the receptor molecule. To establish a relationship between sequestration of the Ang II receptor and the physical properties of the Ang II-binding sites, 125I-Ang II–receptor complex profiles were analysed by isoelectric focusing. In plasma membrane preparations two predominant Ang II-binding sites, migrating to pI 6·8 and 6·5 were found. After exposure to Ang II, cells lost 125I-Ang II-binding capacity to the Ang II–receptor complex migrating at pI 6·8 which was prevented in PhAsO-treated cells. Pretreatment of hepatocytes with okadaic acid did not modify Ang II–receptor complex profiles, indicating that the binding sites corresponding to pI 6·5 and pI 6·8 do not represent a phosphorylated and/or non-phosphorylated form of the Ang II receptor. The results show that the Ang II–receptor complex isoform at pI 6·8 represents a functional form of the type-1 Ang II receptor. Further studies are necessary to identify the Ang II-related nature of the binding sites corresponding to pI 6·5. Journal of Endocrinology (1997) 152, 407–412


1991 ◽  
Vol 260 (3) ◽  
pp. C457-C467 ◽  
Author(s):  
S. Yanai ◽  
Y. Sugiyama ◽  
D. C. Kim ◽  
T. Iga ◽  
T. Fuwa ◽  
...  

The interaction of epidermal growth factor (EGF) with cell surface receptors and their subsequent endocytosis in isolated rat hepatocytes were analyzed by measuring changes in the concentrations of cell surface-bound, internalized, and degraded EGF. The kinetic model proposed by Wiley and Cunningham (Cell 25: 433-440, 1981) and Gex-Fabry and Delisi [Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R768-R779, 1984] was basically utilized for the model analysis. The following kinetic parameters were obtained: association and dissociation rate constants for EGF-receptor interaction, internalization rate constant for EGF-receptor complex (kappa e), internalization rate constant for free receptor (kappa t), sequestration rate constant (kappa s) of the complex from shallow (exchangeable) to deep (nonexchangeable) membraneous compartment, intracellular degradation rate constant and initial cell-surface receptor density. The kappa s value, which was obtained by analyzing the time profiles of EGF association with cells, was approximately 5-10 times larger than the kappa e value determined by directly measuring internalized EGF with the acid-washing technique. This suggests the necessary presence of deep (nonexchanging) compartment of the complex in the plasma membrane. The calculated kappa e value is at least several times larger than the kappa t value, yielding the kinetic basis for the occurrence of receptor downregulation induced by excess EGF. We conclude that, in the overall receptor-mediated processing of EGF after bound to the cell surface receptors, the dissociation process is rapid [half-time (t1/2) less than 1 min], the degradation process is much slower (t1/2 approximately equal to 3 h), and the receptor internalization process is intermediate (t1/2 approximately equal to 6-7 min). In addition, two pools for EGF-receptor complex in the plasma membrane seem to be present, although their identification cannot be made.


1989 ◽  
Vol 4 (3) ◽  
pp. 221-227 ◽  
Author(s):  
ANTONIO BENEDETTI ◽  
GIANNA FERRETTI ◽  
GIOVANNA CURATOLA ◽  
EUGENIO BRUNELLI ◽  
ANNE MARIE JÉZÉQUEL ◽  
...  

1987 ◽  
Vol 243 (3) ◽  
pp. 655-660 ◽  
Author(s):  
P B Gordon ◽  
H Høyvik ◽  
P O Seglen

Measurements of sugar pinocytosis (fluid-phase endocytosis of radiolabelled sucrose, lactose and raffinose) in freshly isolated rat hepatocytes are disturbed by sugar diffusing into the cells through plasma-membrane blebs. Non-pinocytic entry may be even more pronounced at 0 degrees C, and is a major contributor to ‘background’ radioactivity. By electrodisruption of the plasma membrane, a distinction can be made between pinocytotically sequestered sugar and free sugar that has entered the cytosol by diffusion. Pinocytosis proceeds at a rate of 2%/h (relative to the intracellular fluid volume), whereas the rate of sucrose entry by diffusion is more than twice as high. Three pinocytotic compartments are distinguishable in isolated hepatocytes: (1) a rapidly recycling compartment, which is completely destroyed by electrodisruption, and which may represent pinocytic channels continuous with the plasma membrane; (2) a non-recycling (or very slowly recycling) electrodisruption-resistant compartment, which allows accumulation of the lysosomally hydrolysable sugar lactose, and which therefore must represent non-lysosomal vacuoles (endosomes?); (3) a lysosomal compartment (non-recycling, electrodisruption-resistant), which accumulates raffinose and sucrose, but which hydrolyses lactose. The last two compartments can be partially resolved in metrizamide/sucrose density gradients by the use of different sugar probes.


1980 ◽  
Vol 192 (1) ◽  
pp. 373-375 ◽  
Author(s):  
J D Craik ◽  
K R Elliott

Transport of D-fructose and D-galactose across the plasma membrane of isolated rat hepatocytes was followed for the net entry of sugars into sugar-free cells at 20 degrees C. Initial rates of transport showed a Michaelis-Menten dependency on sugar concentration, and transport was inhibited by 3-O-methyl-D-glucose in the external medium.


2000 ◽  
Vol 348 (1) ◽  
pp. 113-117 ◽  
Author(s):  
Douglas D. MCABEE ◽  
Xin JIANG ◽  
Kevin B. WALSH

Lactoferrin binds to rat hepatic lectin 1 (RHL1), the major subunit of the asialoglycoprotein (ASGP) receptor, with high affinity, by a galactose-independent mechanism. To better understand the molecular basis of this novel interaction, we compared the binding of lactoferrin and asialo-orosomucoid (ASOR) to isolated rat hepatocytes and to purified ASGP receptors as a function of pH, Ca2+ and receptor acylation. Binding of 125I-lactoferrin and 125I-ASOR to isolated rat hepatocytes at 4 °C decreased sharply at pH < 6, following similar titration curves. Binding of 125I-lactoferrin and 125I-ASOR to hepatocytes was Ca2+-dependent. Binding increased progressively at ≥ 300 μM CaCl2, in the presence of 1 mM EDTA. Monensin treatment of hepatocytes, which causes hepatocytes to accumulate inactive ASGP receptors, reduced surface binding of 125I-lactoferrin and 125I-ASOR by 46 and 49%, respectively, with only a 16% loss of immunodetectable receptor protein from the cell surface. Finally, deacylation of purified ASGP receptors in vitro with 1 M hydroxylamine abolished receptor lectin activity as reflected by the loss of 125I-ASOR binding as well as the complete loss of specific 125I-lactoferrin binding. Treatment with 1 M Tris had no effect on binding of either ligand. We conclude from these data that galactose-independent lactoferrin binding to the ASGP receptor requires the receptor's carbohydrate-recognition domain to be in an active configuration. An active configuration is promoted by neutral pH and Ca2+, and also requires the receptor subunits to be acylated.


Sign in / Sign up

Export Citation Format

Share Document