scholarly journals Characterization of human high molecular weight kininogen. Procoagulant activity associated with the light chain of kinin-free high molecular weight kininogen.

1978 ◽  
Vol 147 (2) ◽  
pp. 488-499 ◽  
Author(s):  
R E Thompson ◽  
R Mandle ◽  
A P Kaplan

Human high molecular weight (HMW) kininogen has been isolated and was found to be a single chain protein of approximately equal to 120,000 daltons. Upon digestion with plasma kallikrein bradykinin is generated, and SDS gel electrophoresis of the kinin-free protein reveals an apparent loss in size of 15,000 daltons. The kinin-free kininogen retains full activity as a coagulation factor and consists of two chains: a heavy chain of approximately equal to 66,000 daltons disulfide-linked to a light chain of 37,000 daltons. The heavy chain of HMW kininogen shares antigenic determinants with LMW kininogen and possesses no detectable coagulant activity. The isolated light chain is shown to be responsible for the coagulant activity of HMW kininogen and contains a unique antigenic determinant that distinguishes HMW kininogen from low molecular weight kininogen.

1979 ◽  
Vol 149 (4) ◽  
pp. 847-855 ◽  
Author(s):  
AG Scicli ◽  
R Waldmann ◽  
JA Guimaraes ◽  
G Scicli ◽  
OA Carretero ◽  
...  

Bovine high molecular weight kininogen (bHMWK) partially corrects the activated plasma thromboplastin time (aPTT) of Fitzgerald trait plasma which is congenitally deficient in HMWK. The relationship between the structure and activity of HMWK was clarified by studying the effects of different fragments of bHMWK on the aPTT of Fitzgerald-trait plasma. The peptides studied were lys-bradykinin-free HMWK, bradykinin-fragment 1-2-free HMWK, heavy chain, fragment 1-2-light chain, and light chain. All fragments were tested in equimolar concentrations. Bradykinin-fragment 1-2-free HMWK, heavy chain, and light chain have little or no correcting activity upon Fitzgerald-trait plasma aPTr. Fragment 1-2 light chain has the same correcting activity as intact bHMWK, while that of lys-bradykinin-free HMWK appears to be higher. Both fragment 1-2 and fragment 2 inhibit the clotting time of normal human plasma. When compared on a molar basis, fragment 2 is a more active inhibitor than fragment 1-2. When the effects of bovine plasma kallikrein upon bHMWK and hHMWK were studied, it was found that it released kinins from both kininogens. However, while the correcting activity of bHMWK was completely destroyed after 60 min of incubation, that of hHMWK was fully retained. These data suggest that: (a) the active part of bHMWK is comprised of the fragment 1-2 light chain portion; (b) fragment 1-2 or fragment 2 is the binding site to negatively charged surfaces, while the light chain interacts with other components of the surface-mediated reactions; and (c) bovine plasma kallikrein releases kinins, but probably does not cause the release of fragment 1-2 from human HMWK.


1992 ◽  
Vol 67 (04) ◽  
pp. 428-433 ◽  
Author(s):  
Satya P Kunapuli ◽  
Raul A DeLa Cadena ◽  
Robert W Colman

SummaryHuman high molecular weight kininogen (HK), a single chain plasma glycoprotein, serves as a cofactor in the contact system of blood coagulation. After cleavage by human plasma kallikrein, the nonapeptide bradykinin is released. The HK light chain (LC) contains coagulant activity, which requires both the ability to bind the contact system zymogens, prekallikrein and factor XI, and the ability to interact with negatively charged surfaces. Since bacterial expression might not be successful if carbohydrate was required for activity, we evaluated that possibility by incubating plasma HK with endoglycosydase F. Although the procedure removed detectable N-linked carbohydrate, no change in specific activity occurred. We then developed a bacterial expression system to produce recombinant HK LC. The cDNA coding for the HK LC was prepared by polymerase chain reaction (PCR), digested with restriction enzymes EcoRI and PstI, and introduced into the bacterial expression vector pKK223-3. E. coli harboring this recombinant plasmid (pSKl) expressed HK LC upon induction with isopropylthio-galactoside (IPTG). The recombinant protein (27 kDa), when transferred onto a PVDF membrane, was recognized by monospecific polyclonal anti-HK LC-antibodies. The recombinant HK LC was purified by heparin agarose affinity chromatography to homogeneity and found to have a specific activity of 28 coagulant units per mg protein, similar to the specific activity of the LC derived by proteolytic digestion of human plasma HK. We conclude: 1) The HK LC synthesized in bacteria is biologically active, and 2) the 40% carbohydrate content of the HK LC is not required for its cofactor activity.


Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1233-1244 ◽  
Author(s):  
FJ Meloni ◽  
EJ Gustafson ◽  
AH Schmaier

Abstract The unstimulated platelet surface contains a specific and saturable binding site for high molecular weight kininogen (HK) and low molecular weight kininogen (LK). Investigations were performed with purified heavy and light chains of HK to determine which portion(s) of the HK molecule binds to the platelet surface. Purified 64-Kd heavy chain of HK and 56-Kd light chain of HK, independently, inhibited 125I-HK binding to unstimulated platelets with a 50% inhibitory concentration (IC50) of 84 nmol/L (apparent Ki, 30 nmol/L) and 30 nmol/L (apparent Ki, 11 nM), respectively. The ability of each of the purified chains of HK to independently inhibit 125I-HK binding was not due to cleavage, reduction, and alkylation of the protein, because two-chain HK, produced by treating HK the same way as purifying the separate chains, inhibited binding similarly to intact HK. Further, purified LK alone inhibited 125I-HK binding to platelets (Ki, 17 +/- 1 nmol/L, n = 7). The 64-Kd heavy chain of HK was a competitive inhibitor on a reciprocal plot of 125I-HK-platelet binding with an apparent Ki of 28 +/- 6 nmol/L (n = 4). Independently, purified 56-Kd light chain of HK was also found to be a competitive inhibitor of 125I-HK-platelet binding, with an apparent Ki of 11 +/- 3 nmol/L (mean +/- SEM, n = 4). These indirect studies indicated that HK binds to platelets by two portions of the molecule, one on the heavy chain and another on the light chain. Studies with 125I-light chain of HK showed that it specifically bound directly to platelets in the presence of zinc, since it was blocked by HK, light chain of HK, or EDTA, but not by LK, C1s, C1 inhibitor, plasmin, factor XIII, or fibrinogen. Purified light chain of HK did not inhibit direct 125I-LK binding to platelets. HK was found to bind to platelets in an unmodified form. HK bound to platelets was cleaved by plasma or urinary kallikrein at a slower rate than the same concentration of soluble HK or HK bound and subsequently eluted from the platelet surface. Cleavage of platelet-bound HK correlated with bradykinin liberation. These studies indicate that HK has two domains on its molecule that bind to platelets. Further, platelet-bound HK is protected from kallikreins' proteolysis. This latter finding suggests that cell binding may modify the rate of bradykinin liberation from HK.


Blood ◽  
1992 ◽  
Vol 79 (5) ◽  
pp. 1233-1244 ◽  
Author(s):  
FJ Meloni ◽  
EJ Gustafson ◽  
AH Schmaier

The unstimulated platelet surface contains a specific and saturable binding site for high molecular weight kininogen (HK) and low molecular weight kininogen (LK). Investigations were performed with purified heavy and light chains of HK to determine which portion(s) of the HK molecule binds to the platelet surface. Purified 64-Kd heavy chain of HK and 56-Kd light chain of HK, independently, inhibited 125I-HK binding to unstimulated platelets with a 50% inhibitory concentration (IC50) of 84 nmol/L (apparent Ki, 30 nmol/L) and 30 nmol/L (apparent Ki, 11 nM), respectively. The ability of each of the purified chains of HK to independently inhibit 125I-HK binding was not due to cleavage, reduction, and alkylation of the protein, because two-chain HK, produced by treating HK the same way as purifying the separate chains, inhibited binding similarly to intact HK. Further, purified LK alone inhibited 125I-HK binding to platelets (Ki, 17 +/- 1 nmol/L, n = 7). The 64-Kd heavy chain of HK was a competitive inhibitor on a reciprocal plot of 125I-HK-platelet binding with an apparent Ki of 28 +/- 6 nmol/L (n = 4). Independently, purified 56-Kd light chain of HK was also found to be a competitive inhibitor of 125I-HK-platelet binding, with an apparent Ki of 11 +/- 3 nmol/L (mean +/- SEM, n = 4). These indirect studies indicated that HK binds to platelets by two portions of the molecule, one on the heavy chain and another on the light chain. Studies with 125I-light chain of HK showed that it specifically bound directly to platelets in the presence of zinc, since it was blocked by HK, light chain of HK, or EDTA, but not by LK, C1s, C1 inhibitor, plasmin, factor XIII, or fibrinogen. Purified light chain of HK did not inhibit direct 125I-LK binding to platelets. HK was found to bind to platelets in an unmodified form. HK bound to platelets was cleaved by plasma or urinary kallikrein at a slower rate than the same concentration of soluble HK or HK bound and subsequently eluted from the platelet surface. Cleavage of platelet-bound HK correlated with bradykinin liberation. These studies indicate that HK has two domains on its molecule that bind to platelets. Further, platelet-bound HK is protected from kallikreins' proteolysis. This latter finding suggests that cell binding may modify the rate of bradykinin liberation from HK.


1994 ◽  
Vol 269 (30) ◽  
pp. 19307-19312 ◽  
Author(s):  
Y.T. Wachtfogel ◽  
R.A. DeLa Cadena ◽  
S.P. Kunapuli ◽  
L. Rick ◽  
M. Miller ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2181-2181
Author(s):  
Xuemei Zhu ◽  
Robert W. Colman ◽  
Yi Wu

Abstract Abstract 2181 Objectives: High molecular weight kininogen (HK) is a major component of plasma kallikrein-kinin system (KKS), and is cleaved to its active form (HKa) upon the activation of this system. Although the KKS activation is widely involved in a variety of pathological settings, the activities of its activation product HKa remain largely unknown. Recently we have reported that HKa accelerates the onset of endothelial progenitor cell (EPC) senescence by induction of reactive oxygen species (Arterioscler Thromb Vasc Biol. 2011;31:883), whereas the mechanism is not clear. In this study, we investigated whether HKa induces EPC senescence via stimulation of c-Jun N-terminal kinases (JNK)-related pathway. Methods: Human EPCs were treated with HKa in different concentrations for 72 hours, which were followed by the measurement of phospharylation of JNK at Thr183/tyr185 and transcription factor FOXO4 at Thr451, as well as expression of Mn-superoxide dismutase (MnSOD) at protein and mRNA level. To narrow down the functional domain of HKa, recombinant proteins of human HK heavy chain (HC, 19–380aa) and light chain (LC, 390–644aa) were generated for determining which domain(s) mediates the effect of HKa. Results: In a concentration-dependent manner, HKa treatment induced phosphorylation of JNK at Thr183/Tyr185, and its downstream phosphorylation of transcription factor FOXO4 at Thr451. Concomitantly, HKa upregulated the expression of MnSOD at protein and mRNA levels as measured by Western blot and real time RT-PCR. However, it did not affect the expression of catalase. Similar to HKa, the heavy chain (HC), but not the light chain, increased the percentage of senescent EPCs (63%±6.6 for HC v.s. 77.5%±6.02 for HKa). Moreover, HC at 100 nM increased FOXO4 phosphorylation at Thr451 and the expression of MnSOD in EPCs. Besides, both of HKa and its HC stimulated the production of intracellular H2O2. Conclusion: These above results demonstrate that HKa accelerates the onset of EPC senescence by stimulating JNK/FOXO4/MnSOD pathway, and its effect is mediated by the HC. Disclosures: No relevant conflicts of interest to declare.


1987 ◽  
Author(s):  
F Tokunaga ◽  
T Miyata ◽  
T Nakamura ◽  
T Morita ◽  
S Iwanaga

Limulus clotting factor, factor C, is a lipopolysaccharide (LPS)-sensitive serine-protease zymogen present in the hemocytes. It is a two-chain glycoprotein (M.W. = 123,000) composed of a heavy chain (M.W. = 80,000) and a light chain (M.W. = 43,000) T. Nakamura et al. (1986) Eur. J. Biochem. 154, 511-521 .On further studies of this zymogen, a single-chain factor C (M.W. = 123,000) was identified by Western blotting technique. The heavy chain had an NH2-terminal sequence of Ser-Gly-Val-Asp-, which was consistent with the NH2-terminal sequence of the single-chain factor C, indicating that the heavy chain is located in the NH2-terminal part of the zymogen. The light chain had an NH22-terminal sequence of Ser-Ser-Gln-Pro-. Incubation of the two-chain zymogen with LPS resulted in the cleavage of a Phe-Ile bond between residues 72 and 73 of the light chain. Concomitant with this cleavage, the A (72.amino acids) and B chains derived from the light chain was formed. The complete amino acid sequence of the A chain was determined by automated Edman degradation. The A chain contained a typical segment which is similar structuraly to those a family of repeats in human β2 -glycoprotein I, complement factors B, Clr, Cls, H, C4b-binding protein, 02, coagulation factor XIII b subunit, haptoglobin a chain, and interleukin 2 receptor. The NH2-terminal sequence of the B chain was Ile-Trp-Asn-Gly-. This chain contained the serine-active site sequence of -ASP-Ala-Cys-Ser-Gly-Asp-SER-Gly-Gly-Pro-.These results indicate that limulus factor C exists in the hemocytes in a single-chain zymogen form and is converted to an active serine-protease by hydrolysis of a specific Phe-Ile peptide bond. The correlation of limulus factor C and mammalian complement proteins was also suggested.


1981 ◽  
Author(s):  
A H Schmaier ◽  
J Kuchibhotla ◽  
R W Colman

Platelets have been shown to contain a number of secret- able coagulant proteins, which participate as substrates or cofactors in plasma coagulation reactions. Since we have previously demonstrated that high molecular weight kininogen (HMWK) is immunochemically present in platelet extracts, we posited that HMWK is secreted during activation of platelets. Fresh normal platelets were washed by a combination of albumin-gradient and gel-filtration procedures. In 11 experiments the supernates of freeze-thaw lysates of normal human platelets contained a mean of 5.7 Units (range 3.16 to 8.14) of HMWK coagulant activity/3 × 1011 platelets. This coagulant activity was neutralized by a goat antiki- ninogen antibody. Using a 125I-HMWK tracer in PRP, the supernate of washed activated platelets contained 0.082% radioactivity as the starting PRP, suggesting that 14% of the total HMWK coagulant activity could be accounted for by plasma contamination. In four experiments, ionophore A23187 (15μM) induced a net secretion of 39% of the total platelet HMWK (range 16 to 49%). Platelet HMWK secretion by A23187 was concentration dependent (1 to 15 μM) . At A23187 (15μM) platelets released 75% 14C-5HT (range 61 to 99%) and 81% low affinity platelet Factor 4 (range 60 to 99%). Ninety-five percent of A23187-induced secretion of HMWK could be blocked by platelet pretreatment with metabolic inhibitors. LDH determinations indicated that only 5% (range 0 to 10%) of total secreted platelet HMWK could be attributed to lysis. Collagen and PGH2 also caused secretion of platelet HMWK coagulant activity. This study indicates that human platelets contain functional HMWK which may be secreted locally to modulate the reactions of the contact phase of plasma proteolysis.


Sign in / Sign up

Export Citation Format

Share Document