scholarly journals Monoclonal origin of B lymphocyte colony-forming cells in spleen colonies formed by multipotential hemopoietic stem cells

1978 ◽  
Vol 148 (6) ◽  
pp. 1468-1477 ◽  
Author(s):  
PK Lala ◽  
GR Johnson

Spleen colonies produced by transplanting lethally irradiated mice with either 12 day fetal liver or adult bone marrow cells were found to contain B- lymphocyte colony-forming cells (BL-CFC) . The proportion of BL-CFC positive spleen colonies did not increase substantially between 8 and 14 days after transplantation, the range being 18-45 percent. However, the absolute number of BL-CFC per spleen colony varied considerably (between 1 and 10,318), although the majority of colonies contained less than 200 BL-CFC. Irrespective of the time after transplantation, smaller spleen colonies were found to have a higher frequency of BL-CFC than larger spleen colonies. To determine the possible clonal origin of BL-CFC from spleen colony- forming unit (CFU-S), CBA mice were injected with equal numbers of CBA and CBA T(6)/T(6) fetal liver or adult bone marrow cells. Analysis of 7-15-day spleen colonies demonstrated that 90 percent were either exclusively T(6) positive or T(6) negative and approximately equal numbers ofboth colony types were observed. B-lymphocyte colonies were grown and successfully karyotyped from 19 spleen colonies. When compared with the original spleen colony karyotype the B-lymphocyte colony cells karyotype was identical in all 19 cases. In 3 of the 19 colonies analyzed a mixture of T(6) positive and T(6) negative karyotypes was present and identical proportions of the karyotypes were present in the pooled B-lymphocyte colony cells and spleen colony cells. The data indicate that the B-lymphocyte colony-forming cells detected in spleen colonies are genuine members of the hemopoietic clone derived from the initiating hemopoietic stem cell (CFU-S).

1991 ◽  
Vol 174 (5) ◽  
pp. 1279-1282 ◽  
Author(s):  
K Ikuta ◽  
I L Weissman

T precursors from fetal liver and adult bone marrow were compared for their ability to give rise to V gamma 4+ T cell development. Fetal thymic lobes were repopulated with fetal liver or adult bone marrow cells, and the organ-cultured thymocytes were analyzed for their T cell receptor expression by the polymerase chain reaction (PCR). Both day 14 fetal liver and adult bone marrow cells gave rise to thymocytes with V gamma 4-J gamma 1 transcripts. However, the average size of the PCR products derived from adult precursors was slightly larger than that from fetal precursors. DNA sequence analysis of the V gamma 4-J gamma 1 transcripts showed that early fetal liver precursors predominantly gave rise to thymocytes with the V gamma 4-J gamma 1 transcripts without N nucleotide insertion, while late fetal liver and adult marrow precursors predominantly gave rise to thymocytes with modified V gamma 4-J gamma 1 junctions. These results suggest the possibility that the level of the N nucleotide insertion is programmed at the level of thymic precursors. This study also supported the model presented previously that the developmental potential of hematopoietic stem cells may change during ontogeny.


Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1870-1872 ◽  
Author(s):  
Patricia A. Taylor ◽  
Ronald T. McElmurry ◽  
Christopher J. Lees ◽  
David E. Harrison ◽  
Bruce R. Blazar

In utero transplantation (IUT) is becoming a viable option for the treatment of various immune and metabolic disorders diagnosed early in gestation. In this study, donor fetal liver cells had a 10-fold competitive engraftment advantage relative to adult bone marrow in allogeneic fetal severe combined immunodeficient (SCID) recipients compared with adult recipients. In contrast, adult bone marrow cells engrafted slightly better than fetal liver cells in allogeneic adult SCID transplant recipients. By using different ratios of fetal and adult cell mixtures, fetal liver cells repopulated 8.2 times better than adult bone marrow cells in fetal recipients, but only 0.8 times as well in adult recipients. Fetal SCID recipients were more permissive to an allogeneic donor graft than adult recipients. These data indicate that the recipient microenvironment may regulate the engraftment efficiency of a given stem cell source and suggest that the use of cord blood should be tested in clinical IUT.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2706-2716 ◽  
Author(s):  
Nobuko Uchida ◽  
Zhi Yang ◽  
Jesse Combs ◽  
Olivier Pourquié ◽  
Megan Nguyen ◽  
...  

Abstract The adhesion molecule BEN/SC1/DM-GRASP (BEN) is a marker in the developing chicken nervous system that is also expressed on the surface of embryonic and adult hematopoietic cells such as immature thymocytes, myeloid progenitors, and erythroid progenitors. F84.1 and KG-CAM, two monoclonal antibodies to rat neuronal glycoproteins with similarity to BEN, cross-react with an antigen on rat hematopoietic progenitors, but F84.1 only also recognizes human blood cell progenitors. We have defined the antigen recognized by F84.1 as the hematopoietic cell antigen (HCA). HCA expression was detected on 40% to 70% of CD34+ fetal and adult bone marrow cells and mobilized peripheral blood cells. Precursor cell activity for long-term in vitro bone marrow cell culture was confined to the subset of CD34+ cells that coexpress HCA. HCA is expressed by the most primitive subsets of CD34+ cells, including all rhodamine 123lo, Thy-1+, and CD38−/lo CD34+ adult bone marrow cells. HCA was also detected on myeloid progenitors but not on early B-cell progenitors. We also describe here the cloning and characterization of cDNAs encoding two variants of the human HCA antigen (huHCA-1 and huHCA-2) and of a cDNA clone encoding rat HCA (raHCA). The deduced amino acid sequences of huHCA and raHCA are homologous to that of chicken BEN. Recombinant proteins produced from either human or rat HCA cDNAs were recognized by F84.1, whereas rat HCA but not human HCA was recognized by antirat KG-CAM. Expression of either form of huHCA in CHO cells conferred homophilic adhesion that could be competed with soluble recombinant huHCA-Fc. The molecular cloning of HCA and the availability of recombinant HCA should permit further evaluation of its role in human and rodent hematopoiesis.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3444-3455 ◽  
Author(s):  
Anastasia Guerriero ◽  
Lydia Worford ◽  
H. Kent Holland ◽  
Gui-Rong Guo ◽  
Kevin Sheehan ◽  
...  

Abstract We have previously characterized stromal progenitor cells contained in fetal bone marrow by fluorescence-activated cell sorting (FACS) using the differential expression of CD34, CD38, and HLA-DR, and found that a small number were contained within the CD34+ cell fraction. In the present study, the frequency of stromal progenitors in both the CD34+ and CD34− subpopulations from samples of fetal and adult bone marrow was approximately one in 5,000 of the mononuclear cell fraction. Using multiparameter single-cell sorting, one in 20 fetal bone marrow cells with the CD34+, CD38−, HLA-DR−, CDw90+ phenotype were clonogenic stromal progenitors, whereas greater than one in five single cells with the CD34−, CD38−, HLA-DR−, CDw90+ phenotype formed stromal cultures. We found that cultures initiated by hematopoietic and stromal progenitors contained within the CD34+ fraction of bone marrow cells formed mixed hematopoietic/stromal cell cultures that maintained the viability of the hematopoietic progenitor cells for 3 weeks in the absence of added hematopoietic cytokines. We characterized some of the hematopoietic cytokines synthesized by stromal cultures derived from either CD34+ or CD34− bone marrow cells using reverse transcriptase–polymerase chain reaction (RT-PCR) amplification of interleukin-3 (IL-3), stem cell factor (SCF), CD34, Flt3/Flk2 ligand (FL), and thrombopoietin (TPO) mRNA sequences. We found ubiquitous expression of TPO mRNA in greater than 90% of stromal cultures initiated by either CD34+ or CD34− cells, and variable expression of SCF, FL, and CD34 mRNA. In particular, SCF and CD34 mRNA were detected only in stromal cultures initiated by CD34+ bone marrow cells, although the differences between CD34+ and CD34− stromal cells were not statistically significant. IL-3 mRNA was not found in any stromal cultures. An enzyme-linked immunosorbent assay (ELISA) of soluble SCF and TPO present in culture supernatants demonstrated that biologically significant amounts of protein were secreted by some cultured stromal cells: eight of 16 samples of conditioned media from stromal cultures initiated by fetal and adult bone marrow contained more than 32 pg/mL SCF (in the linear range of the ELISA), with a median value of 32 pg/mL (range, 9 to 230), while 13 of 24 samples of conditioned media had more than 16 pg/mL TPO (in the linear range of the ELISA), with a median of 37 pg/mL (range, 16 to 106). Our data indicate that stromal cultures initiated by single bone marrow cells can make FL, SCF, and TPO. Local production of early-acting cytokines and TPO by stromal cells may be relevant to the regulation of hematopoietic stem cell self-renewal and megakaryocytopoiesis in the bone marrow microenvironment.


1976 ◽  
Vol 144 (2) ◽  
pp. 494-506 ◽  
Author(s):  
I Scher ◽  
S O Sharrow ◽  
R Wistar ◽  
R Asofsky ◽  
W E Paul

The density of total Ig and of IgM, IgG1, IgG2, and IgA on the surface of adult murine splenic B lymphocytes was measured using the technique of rapid flow microfluorometry. In addition, the density of total surface Ig and of IgM on B lymphocytes derived from adult bone marrow, lymph nodes, and Peyer's patches, and from neonatal spleen was determined. Adult spleen and lymph node B lymphocytes are characterized by the presence of a large population of cells with a low-to-intermediate density of total surface Ig, which is seen as a peak in the fluorescence profiles when these cells are labeled with fluorescein-conjugated (F1) anti-Ig. This peak is not detected when neonatal spleen or adult bone marrow are examined; the development of this peak among spleen cells occurs during the first 4 wk of life. Although the characteristic fluorescence intensity peak is not seen when adult spleen cells are labeled with Fl anti-mu, changes in the density of surface IgM do occur during the first few weeks of life and are detected as a decrease in the frequency of cells which have relatively large amounts of surface IgM. The differences seen in the fluorescence patterns of adult spleen cells labeled with Fl anti-Ig and Fl anti-mu may be due to the appearance of IgD on the surface of mature splenic B lymphocytes. This is supported by the similarity of the fluorescence profiles of adult bone marrow cells stained with Fl anti-Ig and Fl anti-mu, as the latter population of cells is reported to lack surface IgD.


1986 ◽  
Vol 6 (4) ◽  
pp. 1108-1116 ◽  
Author(s):  
M Yagi ◽  
R Gelinas ◽  
J T Elder ◽  
M Peretz ◽  
T Papayannopoulou ◽  
...  

The human alpha-like globins undergo a switch from the embryonic zeta-chain to the alpha-chain early in human development, at approximately the same time as the beta-like globins switch from the embryonic epsilon-to the fetal gamma-chains. We investigated the chromatin structure of the human alpha-globin gene cluster in fetal and adult erythroid cells. Our results indicate that DNase I-hypersensitive sites exist at the 5' ends of the alpha 1- and alpha 2-globin genes as well as at several other sites in the cluster in all erythroid cells examined. In addition, early and late fetal liver erythroid cells and adult bone marrow cells contain hypersensitive sites at the 5' end of the zeta gene, and in a purified population of 130-day-old fetal erythroid cells, the entire zeta-to alpha-globin region is sensitive to DNase I digestion. The presence of features of active chromatin in the zeta-globin region in fetal liver and adult bone marrow cells led us to investigate the transcription of zeta in these cells. By nuclear runoff transcription studies, we showed that initiated polymerases are present on the zeta-globin gene in these normal erythroid cells. Immunofluorescence with anti-zeta-globin antibodies also showed that late fetal liver cells contain zeta-globin. These findings demonstrate that expression of the embryonic zeta-globin continues at a low level in normal cells beyond the embryonic to fetal globin switch.


2009 ◽  
Vol 43 (5) ◽  
pp. 433-443 ◽  
Author(s):  
Qi Liu ◽  
Zhiqiang Chen ◽  
Toya Terry ◽  
Janice M. McNatt ◽  
James T. Willerson ◽  
...  

2009 ◽  
Vol 40 (5) ◽  
pp. 575-587 ◽  
Author(s):  
James A. Fritzell ◽  
Quanfu Mao ◽  
Sravanthi Gundavarapu ◽  
Terry Pasquariello ◽  
Jason M. Aliotta ◽  
...  

Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1091-1100 ◽  
Author(s):  
JP Blanchet ◽  
J Samarut ◽  
G Mouchiroud

Abstract The production of erythrocytes bearing an “immature” antigen (Im+ cells) and a “fetal” antigen (Ft+ cells) has been studied in irradiated adult mice grafted either with fetal liver or adult bone marrow cells. The Im+ cells reach a peak 8–11 days after grafting. Ft+ cells are detected only after graft of fetal liver cells; the younger the liver, the greater the number. Since Ft+ cells are rapidly and briefly produced, they could be the progeny of erythroid-committed precursors, which are particularly numerous among fetal liver cells. Environmental factors directing the erythropoietic differentiation towards Ft+ erythrocytes in fetuses or Ft- erythrocytes in adults are proposed.


Sign in / Sign up

Export Citation Format

Share Document