scholarly journals Production of fetal antigen-bearing erythrocytes in irradiated adult mice grafted with fetal liver hematopoietic cells

Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1091-1100 ◽  
Author(s):  
JP Blanchet ◽  
J Samarut ◽  
G Mouchiroud

Abstract The production of erythrocytes bearing an “immature” antigen (Im+ cells) and a “fetal” antigen (Ft+ cells) has been studied in irradiated adult mice grafted either with fetal liver or adult bone marrow cells. The Im+ cells reach a peak 8–11 days after grafting. Ft+ cells are detected only after graft of fetal liver cells; the younger the liver, the greater the number. Since Ft+ cells are rapidly and briefly produced, they could be the progeny of erythroid-committed precursors, which are particularly numerous among fetal liver cells. Environmental factors directing the erythropoietic differentiation towards Ft+ erythrocytes in fetuses or Ft- erythrocytes in adults are proposed.

Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1091-1100
Author(s):  
JP Blanchet ◽  
J Samarut ◽  
G Mouchiroud

The production of erythrocytes bearing an “immature” antigen (Im+ cells) and a “fetal” antigen (Ft+ cells) has been studied in irradiated adult mice grafted either with fetal liver or adult bone marrow cells. The Im+ cells reach a peak 8–11 days after grafting. Ft+ cells are detected only after graft of fetal liver cells; the younger the liver, the greater the number. Since Ft+ cells are rapidly and briefly produced, they could be the progeny of erythroid-committed precursors, which are particularly numerous among fetal liver cells. Environmental factors directing the erythropoietic differentiation towards Ft+ erythrocytes in fetuses or Ft- erythrocytes in adults are proposed.


Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1870-1872 ◽  
Author(s):  
Patricia A. Taylor ◽  
Ronald T. McElmurry ◽  
Christopher J. Lees ◽  
David E. Harrison ◽  
Bruce R. Blazar

In utero transplantation (IUT) is becoming a viable option for the treatment of various immune and metabolic disorders diagnosed early in gestation. In this study, donor fetal liver cells had a 10-fold competitive engraftment advantage relative to adult bone marrow in allogeneic fetal severe combined immunodeficient (SCID) recipients compared with adult recipients. In contrast, adult bone marrow cells engrafted slightly better than fetal liver cells in allogeneic adult SCID transplant recipients. By using different ratios of fetal and adult cell mixtures, fetal liver cells repopulated 8.2 times better than adult bone marrow cells in fetal recipients, but only 0.8 times as well in adult recipients. Fetal SCID recipients were more permissive to an allogeneic donor graft than adult recipients. These data indicate that the recipient microenvironment may regulate the engraftment efficiency of a given stem cell source and suggest that the use of cord blood should be tested in clinical IUT.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2707-2707
Author(s):  
Ahmed Waraky ◽  
Anders Östlund ◽  
Laleh Arabanian ◽  
Tina Nilsson ◽  
Linda Fogelstrand ◽  
...  

Introduction: Non-random cytogenetic aberrations are often involved in the development of AML in children and several aberrations can serve as diagnostic markers, prognosis predictors and impact choice of therapy. In infant AML, a chromosomal translocation t(7;12)(q36;p13) has been found in up to 20-30 % of the cases, making it the second most common genetic aberration in this age group after KMT2A (MLL) rearrangements. Previous studies indicate that this patient group has a dismal prognosis with virtually no event-free survival. Limiting the chances to improve this is the lack of understanding how the t(7;12)(q36;p13) is involved in leukemia development. The translocation leads to a gene fusion MNX1-ETV6 but also to increased MNX1 gene expression. Although both ETV6 and MNX1 are expressed in normal hematopoietic tissues, the role of the fusion protein MNX1-ETV6in the development of AML is not established. Also unclear is whether the driver of leukemogenesis is the fusion itself or the simultaneous overexpression of MNX1. The aim of this study was to assess the transformation capacity and the molecular mechanism of the MNX1-ETV6 fusion and the overexpressed MNX1in vitro and in vivo using murine transplantation models. Material and methods: In a liquid culture system, we introduced the MNX1-ETV6 fusion, MNX1 overexpression, or empty vector into primary murine (C57BL/6) hematopoietic progenitor cells with retroviral transfection. Cells were isolated from either adult bone marrow after 5-FU stimulation, or from fetal liver at E14.5. After enrichment by fluorescence activated cell sorting based on vector co-expressed green/yellow fluorescence protein, transfected cells were used for in vitro experiments and for transplantation into lethally irradiated immunocompetent C57BL/6 mice or sub-lethally irradiated immunocompromised NSGW41 mice. In vitro, cells were assessed with RNA sequencing for gene expression, gamma H2AX assay for DNA double strand brakes, flow cytometry for lineage marker expression, apoptosis and proliferation, and with colony forming unit assay. Results: Upon transplantation, only fetal liver cells transduced with MNX1 or with MNX1-ETV6 fusion were able to induce leukemia in immunocompromised (NSGW41) mice. When MNX1 or MNX1-ETV6 transduced cells were transplanted into immunocompetent mice (C57BL/6) mice, no leukemia development was seen, when either fetal liver or adult bone marrow cells were used for transduction. However, when immunocompromised mice were transplanted with MNX1 or MNX1-ETV6 fusion expressing cells they typically developed signs of disease after 1-2 months and exhibited leukocytosis and elevated blast cells in blood and bone marrow, severe anemia, and enlarged spleens with infiltration of leukemic cells. The cells showed expression of predominantly myeloid markers. In vitro, cells with overexpression of MNX1 or MNX1-ETV6 fusion expression also showed altered lineage differentiation in favor of myeloid differentiation. In addition, MNX1 overexpressing cells, but not MNX1-ETV6 expressing cells, exhibited increased proliferation and colony formation capacity. Both MNX1 overexpressing and MNX1-ETV6 fusion expressing cells showed increased DNA damage as evident from an increased gamma-phosphorylated H2AX in fetal liver and adult bone marrow transduced cells respectively, accompanied with G1 arrest, compared to cells transduced with empty vectors. Both MNX1 and MNX1-ETV6 also led to increased apoptosis in adult bone marrow (3-fold) and to a lesser extent in fetal liver cells (1.5-fold). Results from transcriptome sequencing showed enrichment for specific pathways in G2/M transition of cell cycle in cells transduced by either MNX1or the MNX1-ETV6 fusion. Further investigations to elucidate the molecular mechanisms and pathways through which MNX1 and/or MNX1-ETV6 induce leukemia is ongoing. Conclusions: MNX1 overexpression and MNX1-ETV6 fusion, both characteristics of infant AML with t(7;12)(q36;p13), induced leukemogenic effects in both fetal liver cells and adult bone marrow cells, but could cause a myeloid leukemia only under immunocompromised conditions. This may be of importance for the exclusive prevalence of this AML subtype in young children, with the highest peak during the first six months of life when the immune system is less developed. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 433-439 ◽  
Author(s):  
C Richardson ◽  
M Ward ◽  
S Podda ◽  
A Bank

Abstract We have been transducing mouse hematopoietic cells with the human MDR1 (MDR) gene in retroviral vectors to determine the optimal conditions for retroviral gene transfer as a model system for potential human gene therapy. In these studies, we have demonstrated transduction and expression of the human MDR gene using ecotropic and amphotropic MDR- retroviral producer lines. To obtain more mouse hematopoietic cells for detailed study, mouse fetal liver cells (FLC) have been used for MDR transduction and expression, and to reconstitute the ablated marrows of live adult mice. FLC contain hematopoietic cells that have a reconstituting capacity comparable to that of adult mouse bone marrow cells. However, to our surprise, FLC can only be transduced with ecotropic retrovirus and not with amphotropic virus. This restriction of transduction of FLC cannot be overcome by higher titer virus. The resistance to amphotropic transduction by FLC may be part of a changing developmental program that results in a different antigen repertoire on FLC as compared with adult bone marrow cells.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 433-439
Author(s):  
C Richardson ◽  
M Ward ◽  
S Podda ◽  
A Bank

We have been transducing mouse hematopoietic cells with the human MDR1 (MDR) gene in retroviral vectors to determine the optimal conditions for retroviral gene transfer as a model system for potential human gene therapy. In these studies, we have demonstrated transduction and expression of the human MDR gene using ecotropic and amphotropic MDR- retroviral producer lines. To obtain more mouse hematopoietic cells for detailed study, mouse fetal liver cells (FLC) have been used for MDR transduction and expression, and to reconstitute the ablated marrows of live adult mice. FLC contain hematopoietic cells that have a reconstituting capacity comparable to that of adult mouse bone marrow cells. However, to our surprise, FLC can only be transduced with ecotropic retrovirus and not with amphotropic virus. This restriction of transduction of FLC cannot be overcome by higher titer virus. The resistance to amphotropic transduction by FLC may be part of a changing developmental program that results in a different antigen repertoire on FLC as compared with adult bone marrow cells.


1986 ◽  
Vol 6 (4) ◽  
pp. 1108-1116 ◽  
Author(s):  
M Yagi ◽  
R Gelinas ◽  
J T Elder ◽  
M Peretz ◽  
T Papayannopoulou ◽  
...  

The human alpha-like globins undergo a switch from the embryonic zeta-chain to the alpha-chain early in human development, at approximately the same time as the beta-like globins switch from the embryonic epsilon-to the fetal gamma-chains. We investigated the chromatin structure of the human alpha-globin gene cluster in fetal and adult erythroid cells. Our results indicate that DNase I-hypersensitive sites exist at the 5' ends of the alpha 1- and alpha 2-globin genes as well as at several other sites in the cluster in all erythroid cells examined. In addition, early and late fetal liver erythroid cells and adult bone marrow cells contain hypersensitive sites at the 5' end of the zeta gene, and in a purified population of 130-day-old fetal erythroid cells, the entire zeta-to alpha-globin region is sensitive to DNase I digestion. The presence of features of active chromatin in the zeta-globin region in fetal liver and adult bone marrow cells led us to investigate the transcription of zeta in these cells. By nuclear runoff transcription studies, we showed that initiated polymerases are present on the zeta-globin gene in these normal erythroid cells. Immunofluorescence with anti-zeta-globin antibodies also showed that late fetal liver cells contain zeta-globin. These findings demonstrate that expression of the embryonic zeta-globin continues at a low level in normal cells beyond the embryonic to fetal globin switch.


1978 ◽  
Vol 148 (6) ◽  
pp. 1468-1477 ◽  
Author(s):  
PK Lala ◽  
GR Johnson

Spleen colonies produced by transplanting lethally irradiated mice with either 12 day fetal liver or adult bone marrow cells were found to contain B- lymphocyte colony-forming cells (BL-CFC) . The proportion of BL-CFC positive spleen colonies did not increase substantially between 8 and 14 days after transplantation, the range being 18-45 percent. However, the absolute number of BL-CFC per spleen colony varied considerably (between 1 and 10,318), although the majority of colonies contained less than 200 BL-CFC. Irrespective of the time after transplantation, smaller spleen colonies were found to have a higher frequency of BL-CFC than larger spleen colonies. To determine the possible clonal origin of BL-CFC from spleen colony- forming unit (CFU-S), CBA mice were injected with equal numbers of CBA and CBA T(6)/T(6) fetal liver or adult bone marrow cells. Analysis of 7-15-day spleen colonies demonstrated that 90 percent were either exclusively T(6) positive or T(6) negative and approximately equal numbers ofboth colony types were observed. B-lymphocyte colonies were grown and successfully karyotyped from 19 spleen colonies. When compared with the original spleen colony karyotype the B-lymphocyte colony cells karyotype was identical in all 19 cases. In 3 of the 19 colonies analyzed a mixture of T(6) positive and T(6) negative karyotypes was present and identical proportions of the karyotypes were present in the pooled B-lymphocyte colony cells and spleen colony cells. The data indicate that the B-lymphocyte colony-forming cells detected in spleen colonies are genuine members of the hemopoietic clone derived from the initiating hemopoietic stem cell (CFU-S).


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2525-2525
Author(s):  
Takuo Katsumoto ◽  
Issay Kitabayashi

Abstract Abstract 2525 Poster Board II-502 MOZ (MOnocytic leukemia Zinc finger protein) and MORF (MOz Related Factor), Myst-type histone acetyltransferases, are involved in chromosome translocations associated with FAB-M4/5 subtypes of acute myeloid leukemia. We have reported that MOZ is essential for hematopoietic cell development and self-renewal of hematopoietic stem cells. To explore the possibility MORF also plays important roles in hematopoiesis, we generated Morf-deficient mice with homologous recombination methods. Morf−/− mice were smaller than their wildtype littermates and died within 4 weeks after birth on C57BL/6 background. In MORF−/− fetal liver, Flt3-negative KSL (c-Kit+ Sca-1+ Lineage-) cells containing hematopoietic stem cells were decreased. When fetal liver cells were transplanted into irradiated recipient mice, MORF−/− cells less efficiently reconstituted hematopoiesis than wild-type cells. Additionally, bone marrow cells reconstituted with MORF−/− cells rarely contributed to hematopoiesis in secondary transplants. To reveal relationship between MORF and MOZ in hematopoiesis, we generated double heterozygous (Moz+/− Morf+/−) mouse. Double heterozygous mice were smaller than wild-type littermates and died at least 4 weeks after birth. Numbers of KSL cells, especially Flt3- KSL cells and common myeloid progenitors were decreased in the double heterozygous embryos. The double heterozygous fetal liver cells also displayed less activity to reconstitute hematopoiesis than MOZ+/− or MORF+/− cells. Since MORF−/− mice and MOZ/MORF double heterozygous mice were alive at adult on a mixed C57BL/6/DBA2 genetic background, we investigated adult hematopoiesis in these mice. MORF−/− or MOZ/MORF double heterozygous mice were smaller than their wild-type littermates and had small numbers of thymocytes and splenocytes. However, there were no significant differences in number of bone marrow cells and hematopoietic lineage population in MORF−/− or MOZ/MORF double heterozygous mice. These results suggest that MORF as well as MOZ plays important roles in self-renewal of hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document