scholarly journals Absence of interleukin 2 production in a severe combined immunodeficiency disease syndrome with T cells.

1990 ◽  
Vol 171 (5) ◽  
pp. 1697-1704 ◽  
Author(s):  
J P DiSanto ◽  
C A Keever ◽  
T N Small ◽  
G L Nicols ◽  
R J O'Reilly ◽  
...  

We have characterized a child with a severe combined immunodeficiency disease syndrome with increased numbers, but a normal distribution, of CD3+ T cells. This patient's immunological defect appears to be attributable to a selective deficiency in T cell production of IL-2, which may reflect a subtle abnormality in the IL-2 gene locus or a defect in a regulatory factor necessary for IL-2 transcription. The increased numbers of phenotypically normal T cells in this patient suggest that alternative pathways of T cell development exist in man or that IL-2 production intra- and extrathymically is controlled via distinct regulatory mechanisms.

Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 607-612 ◽  
Author(s):  
Satoru Kumaki ◽  
Naoto Ishii ◽  
Masayoshi Minegishi ◽  
Shigeru Tsuchiya ◽  
David Cosman ◽  
...  

X-linked severe combined immunodeficiency (X-SCID) is characterized by an absent or diminished number of T cells and natural-killer (NK) cells with a normal or elevated number of B cells, and results from mutations of the γc chain. The γc chain is shared by interleukin-2 (IL-2), IL-4, IL-7, IL-9, and IL-15 receptors. Recently, a survival signal through the IL-7 receptor  (IL-7R) chain was shown to be important for T-cell development in mice and was suggested to contribute to the X-SCID phenotype. In the present study, we examined function of a mutant γc chain (A156V) isolated from an X-SCID patient and found that T cells expressing the mutant γc chain were selectively impaired in their responses to IL-4 or IL-7 compared with the wild-type γc chain expressing cells although responses to IL-2 or IL-15 were relatively maintained. The result shows that IL-4– and/or IL-7–induced signaling through the γc chain is critical for T-cell development and plays an important role in the development of the X-SCID phenotype.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 607-612 ◽  
Author(s):  
Satoru Kumaki ◽  
Naoto Ishii ◽  
Masayoshi Minegishi ◽  
Shigeru Tsuchiya ◽  
David Cosman ◽  
...  

Abstract X-linked severe combined immunodeficiency (X-SCID) is characterized by an absent or diminished number of T cells and natural-killer (NK) cells with a normal or elevated number of B cells, and results from mutations of the γc chain. The γc chain is shared by interleukin-2 (IL-2), IL-4, IL-7, IL-9, and IL-15 receptors. Recently, a survival signal through the IL-7 receptor  (IL-7R) chain was shown to be important for T-cell development in mice and was suggested to contribute to the X-SCID phenotype. In the present study, we examined function of a mutant γc chain (A156V) isolated from an X-SCID patient and found that T cells expressing the mutant γc chain were selectively impaired in their responses to IL-4 or IL-7 compared with the wild-type γc chain expressing cells although responses to IL-2 or IL-15 were relatively maintained. The result shows that IL-4– and/or IL-7–induced signaling through the γc chain is critical for T-cell development and plays an important role in the development of the X-SCID phenotype.


Blood ◽  
2000 ◽  
Vol 96 (8) ◽  
pp. 2803-2807 ◽  
Author(s):  
Chaim M. Roifman ◽  
Junyan Zhang ◽  
David Chitayat ◽  
Nigel Sharfe

Abstract Both in vitro and in vivo studies established that interleukin 7 (IL-7) is essential for differentiation of immature T cells and B cells but not natural killer (NK) cells in the mouse. In humans, although both T-cell and B-cell progenitors express the functional IL-7 receptor that consists of IL-7Rα and the γcommon (γc) chain, this lymphocyte receptor system is critical for T lineage but not for B lineage development. Indeed, complete γc deficiency like IL-7Rα deficiency results in the arrest of T-cell but not B-cell development (T−B+ SCID). However, partial deficiency of γc caused by missense mutations results in a T+B+ phenotype and a delay of clinical presentation. It was therefore plausible to assume that partial deficiency of IL-7Rα, like partial γc deficiency may lead to a milder clinical and immunologic phenotype. A P132S mutation in the IL-7Rα was identified in 3 patients with severe combined immunodeficiency (SCID) within an extensively consanguineous family. Substitution of proline with serine in the extracellular portion of IL-7Rα did not affect IL-7Rα messenger RNA (mRNA) and protein expression, but severely compromised affinity to IL-7, resulting in defective signal transduction. In response to IL-7 stimulation, Jak-3 phosphorylation was markedly reduced in both patient cells as well as in COS cells reconstituted with mutant IL-7Rα. Surprisingly, this partial deficiency of IL-7Rα resulted in a severe phenotype, including markedly reduced circulating T cells while sparing B-cell numbers similar to γc chain deficiency. However, unlike the previously reported cases, serum immunoglobulins were virtually absent. Further, unlike γc deficiency, NK cell numbers and function was preserved. Despite the partial deficiency, clinical presentation was indistinguishable from a complete γc deficiency, including severe and persistent viral and protozoal infections and failure to thrive. Unlike partial γc deficiency, a partial deficiency of IL-7Rα results in an arrest of T-cell development, leading to typical severe combined immunodeficiency. This underscores the critical role of IL-7Rα chain in the differentiation of T cells.


Blood ◽  
1993 ◽  
Vol 81 (8) ◽  
pp. 2021-2030 ◽  
Author(s):  
Y Dror ◽  
R Gallagher ◽  
DW Wara ◽  
BW Colombe ◽  
A Merino ◽  
...  

Abstract We describe our 9-year experience with lectin-treated T-cell-depleted haplocompatible parental bone marrow transplantation (BMT) for 24 patients with severe combined immunodeficiency disease (SCID). Nineteen of 21 evaluable patients had T-cell engraftment; 2 of 11 patients tested had B-cell and monocyte engraftment. Fourteen of 24 (58%) patients are alive 7 months to 9.8 years post-BMT. Seventeen of 24 patients received pretransplant conditioning with chemotherapy and/or total body irradiation, and 8 of 24 received more than one transplant. Patients who received conditioning had a survival rate of 61% versus 57% for those who received no conditioning. None received graft-versus- host disease (GVHD) prophylaxis and no patient had acute or chronic GVHD greater than grade I. Kinetics and follow-up of immune recovery were analyzed in 14 patients who are greater than 1 year from transplant. Half of the patients showed evidence of T-cell function by 3 months and normal T-cell function by 4 to 7 months post-BMT. On average, T-cell numbers and subsets became normal 10 to 12 months posttransplant. Recovery of B-cell function was more delayed, although in most patients B-cell numbers and IgM levels were normal by 12 months post-BMT. B-cell function, as determined by isohemagglutinin titers or specific antibodies to pneumococcal polysaccharide, keyhole limpet hemocyanin, or tetanus toxoid, became normal in 10 of 14 patients 2 to 8 years post-BMT. Seven of the 14 are off gammaglobulin therapy. Production of isohemagglutinins tended to predict recovery of antibody response to pneumococcal polysaccharide (P < .064). Based on these results, we believe that haplocompatible BMT is an effective, curative treatment for patients with SCID who lack an HLA-matched related donor.


Sign in / Sign up

Export Citation Format

Share Document