scholarly journals Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals.

1993 ◽  
Vol 178 (6) ◽  
pp. 2123-2130 ◽  
Author(s):  
H Secrist ◽  
C J Chelen ◽  
Y Wen ◽  
J D Marshall ◽  
D T Umetsu

Allergen specific CD4+ T cell clones generated from allergic individuals have been shown to produce increased levels of the cytokine interleukin 4 (IL-4), compared to allergen specific clones generated from nonallergic individuals. This difference between CD4+ T cells from allergic and nonallergic individuals with regard to cytokine production in response to allergen is thought to be responsible for the development of allergic disease with increased IgE synthesis in atopic individuals. We examined the production of IL-4 in subjects with allergic rhinitis and in allergic individuals treated with allergen immunotherapy, a treatment which involves the subcutaneous administration of increasing doses of allergen and which is highly effective and beneficial for individuals with severe allergic rhinitis. We demonstrated that the quantity of IL-4 produced by allergen specific memory CD4+ T cells from allergic individuals could be considerably reduced by in vivo treatment with allergen (allergen immunotherapy). Immunotherapy reduced IL-4 production by allergen specific CD4+ T cells to levels observed with T cells from nonallergic subjects, or to levels induced with nonallergic antigens such as tetanus toxoid. In most cases the levels of IL-4 produced were inversely related to the length of time on immunotherapy. These observations indicate that immunotherapy accomplishes its clinical effects by reducing IL-4 synthesis in allergen specific CD4+ T cells. In addition, these observations indicate that the cytokine profiles of memory CD4+ T cells can indeed be altered by in vivo therapies. Thus, the cytokine profiles of memory CD4+ T cells are mutable, and are not fixed as had been suggested by studies of murine CD4+ memory T cells. Finally, treatment of allergic diseases with allergen immunotherapy may be a model for other diseases which may require therapies that alter inappropriate cytokine profiles of memory CD4+ T cells.

2007 ◽  
Vol 179 (7) ◽  
pp. 4397-4404 ◽  
Author(s):  
Stephen L. Shiao ◽  
Nancy C. Kirkiles-Smith ◽  
Benjamin R. Shepherd ◽  
Jennifer M. McNiff ◽  
Edward J. Carr ◽  
...  

PEDIATRICS ◽  
1995 ◽  
Vol 96 (2) ◽  
pp. 385-385
Author(s):  
Kathleen May ◽  
Andrew Liu

Allergen immunotherapy results in a decrease in IL-4 production by CD4+ T cells.


1999 ◽  
Vol 190 (8) ◽  
pp. 1115-1122 ◽  
Author(s):  
Lucy S.K. Walker ◽  
Adam Gulbranson-Judge ◽  
Sarah Flynn ◽  
Thomas Brocker ◽  
Chandra Raykundalia ◽  
...  

Mice rendered deficient in CD28 signaling by the soluble competitor, cytotoxic T lymphocyte–associated molecule 4–immunoglobulin G1 fusion protein (CTLA4-Ig), fail to upregulate OX40 expression in vivo or form germinal centers after immunization. This is associated with impaired interleukin 4 production and a lack of CXC chemokine receptor (CXCR)5 on CD4 T cells, a chemokine receptor linked with migration into B follicles. Germinal center formation is restored in CTLA4-Ig transgenic mice by coinjection of an agonistic monoclonal antibody to CD28, but this is substantially inhibited if OX40 interactions are interrupted by simultaneous injection of an OX40-Ig fusion protein. These data suggest that CD28-dependent OX40 ligation of CD4 T cells at the time of priming is linked with upregulation of CXCR5 expression, and migration of T cells into B cell areas to support germinal center formation.


2020 ◽  
Vol 140 (7) ◽  
pp. S8
Author(s):  
Z. Sun ◽  
K. Zhang ◽  
H. Chu ◽  
T.S. Kupper ◽  
C. Park

2000 ◽  
Vol 191 (4) ◽  
pp. 683-694 ◽  
Author(s):  
Gilles Foucras ◽  
Laurent Gapin ◽  
Christiane Coureau ◽  
Jean M. Kanellopoulos ◽  
Jean-Charles Guéry

The precursor origin of T helper (Th) cell subsets in vivo has been difficult to study and remains poorly investigated. We have previously shown that chronic administration of soluble protein antigen induces selective development of antigen-specific CD4 Th2 cells in genetically predisposed mouse strains. To analyze the origin of effector T cells in this model, we designed a competitive polymerase chain reaction–based approach to track public BV-J rearrangement expressed by CD4 T cells specific for hen egg white lysozyme (HEL) in BALB/c mice. We show that public T cell clones are predominantly associated with type 1 or 2 effector Th cells recovered after primary immunization in complete or incomplete Freund's adjuvant, respectively. Conversely, continuous administration of soluble antigen, which induces strong memory Th2 response, is associated with a dose-dependent reduction of public clone size by a mechanism resembling clonal anergy. Thus, soluble HEL–induced Th2 cells do not express the public complementarity determining region 3 motifs characteristic of immunogenic challenge in the presence of adjuvant. These results demonstrate that there are multiple pathways of induction of Th2 responses depending on the condition of antigen exposure in vivo, i.e., clonal immune deviation versus recruitment of a different pool of precursor cells.


2011 ◽  
Vol 186 (10) ◽  
pp. 5580-5589 ◽  
Author(s):  
Marion Rudolph ◽  
Katrin Hebel ◽  
Yoshinori Miyamura ◽  
Emanual Maverakis ◽  
Monika C. Brunner-Weinzierl

2001 ◽  
Vol 194 (6) ◽  
pp. 719-732 ◽  
Author(s):  
Saied Mirshahidi ◽  
Ching-Tai Huang ◽  
Scheherazade Sadegh-Nasseri

Induction of tolerance in self-reactive memory T cells is an important process in the prevention of autoimmune responses against peripheral self-antigens in autoimmune diseases. Although naive T cells can readily be tolerized, memory T cells are less susceptible to tolerance induction. Recently, we demonstrated that low avidity engagement of T cell receptor (TCR) by low densities of agonist peptides induced anergy in T cell clones. Since memory T cells are more responsive to lower antigenic stimulation, we hypothesized that a low avidity TCR engagement may induce tolerance in memory T cells. We have explored two antigenic systems in two transgenic mouse models, and have tracked specific T cells that are primed and show memory phenotype. We demonstrate that memory CD4+ T cells can be rendered anergic by presentation of low densities of agonist peptide–major histocompatibility complex complexes in vivo. We rule out other commonly accepted mechanisms for induction of T cell tolerance in vivo, such as deletion, ignorance, or immunosuppression. Anergy is the most likely mechanism because addition of interleukin 2–reversed anergy in specific T cells. Moreover, cytotoxic T lymphocyte antigen (CTLA)-4 plays a critical role in the induction of anergy because we observed that there was increased surface expression of CTLA-4 on anergized T cells, and that injection of anti–CTLA-4 blocking antibody restored anergy in vivo.


2005 ◽  
Vol 202 (6) ◽  
pp. 829-839 ◽  
Author(s):  
Amin Al-Shami ◽  
Rosanne Spolski ◽  
John Kelly ◽  
Andrea Keane-Myers ◽  
Warren J. Leonard

Thymic stromal lymphopoietin (TSLP) is a cytokine that promotes CD4+ T cell homeostasis. We now demonstrate that TSLP is required to mount a normal CD4+ T cell–mediated inflammatory response. TSLP acts directly on naive, but not, memory CD4+ T cells, and promotes their proliferation in response to antigen. In addition, TSLP exerts an effect indirectly through DCs to promote Th2 differentiation of CD4+ T cells. Correspondingly, TSLP receptor (TSLPR) knockout (KO) mice exhibit strong Th1 responses, with high levels of interleukin (IL)-12, interferon-γ, and immunoglobulin (Ig) G2a, but low production of IL-4, -5, -10, -13, and IgE; moreover, CD4+ T cells from these animals proliferate less well in response to antigen. Furthermore, TSLPR KO mice fail to develop an inflammatory lung response to inhaled antigen unless supplemented with wild-type CD4+ T cells. This underscores an important role for this cytokine in the development of inflammatory and/or allergic responses in vivo.


Sign in / Sign up

Export Citation Format

Share Document