exposure in vivo
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 21)

H-INDEX

44
(FIVE YEARS 3)

Author(s):  
min zhang ◽  
jun shi ◽  
qiong huang ◽  
yi xie ◽  
ruihao wu ◽  
...  

Microplastics (MPs) pollution has gained increasing attention recently. Fewer studies have examined the effects of these small items on the vascular system. The aim of this work was to precisely...


Reproduction ◽  
2021 ◽  
Author(s):  
Marina Izvolskaia ◽  
Vasilina Ignatiuk ◽  
Ayshat Ismailova ◽  
Viktoria Sharova ◽  
Liudmila Zakharova

Sexual performance in adult male rats is highly sensitive to prenatal stress which can affect the functionality of the reproductive system and various brain structures involved in modulating sexual behavior. The immunomodulatory effect of mouse IgG on reproductive maturity in male offspring after LPS exposure in vivo and in vitro was studied. Prenatal IgG injection (20 µg / mouse) had a positive impact on the puberty of male mice whose mothers were exposed to LPS (100 µg / kg) on the 12th day of pregnancy. The number of Sertoli cells were increased, whereas the body weight and the number of symplastic spermatids were decreased in offspring as compared to LPS-treated animals. Besides, IgG had a positive effect on altered hormone levels: reduced estradiol level on the 5th and 14th postnatal days and increased testosterone level on the 30th postnatal day in blood that led to an increased number of mounting attempts in sexually mature males. The cAMP-dependent pathway may be involved in the regulation of the LPS-induced inflammation. IgG reduced the increased level of cAMP in mouse peritoneal macrophages activated by LPS in vitro. IgG is able to modulate inflammation processes, but its exposure time is important.


Author(s):  
Inge Timmers ◽  
Vincent van de Ven ◽  
Johan W.S. Vlaeyen ◽  
Rob J. Smeets ◽  
Jeanine A. Verbunt ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jacob Kraus ◽  
Veebha Havaldar ◽  
Lauren Chiu ◽  
Virender Rehan

Given that the rise of electronic cigarettes (e-cigs) has become increasingly relevant to the younger generations of today’s society, this paper investigates the impact of e-cig components, specifically nicotine and various e-cig flavoring chemicals, to fetal exposure during pregnancy on offspring respiratory outcomes. Previous animal studies primarily document the fetal side effects attributed to nicotine, including impaired lung development, with a model of direct chemical exposure, but we have hypothesized that in e-cig users, such phenotypes could result from and be exacerbated by the additional amalgam of chemicals that are responsible for the flavoring of e-cigs.  Therefore, we have examined the harmful effects of nicotine and flavoring chemicals used in e-cigs in defense of the hypothesis that perinatal inhaled nicotine and e-cig flavoring exposure in vivo results in an airway asthmatic phenotype in offspring, which is transmitted transgenerationally, is characterized by Th2 polarization, and is more severe with combined exposure than with either constituent alone. The findings of this review support the hypothesis of this paper in regard to the potential detrimental respiratory effects of combined constituent exposure and indicate the need for the testing of further experimental animal models to better understand the foreseeable health implications of a rising e-cig use.


2021 ◽  
Author(s):  
yin jun ◽  
juan Wen He ◽  
Fei Han ◽  
Zhi qi Gao ◽  
Fang Deng ◽  
...  

Abstract Spermatocyte apoptosis is the primary cause of poor outcome after hypoxia-triggered spermatogenesis reduction (HSR). The vacuolar H+-ATPase (V-ATPase) has been found to be involved in the regulation of hypoxia-induced GC-2 cells apoptosis. However, the mechanism of V-ATPase regulating spermatocyte apoptosis after HSR hasnot been well elucidated. In this study, HSRmodel was established by hypoxia exposure in vivo in V-ATPase-knockout (V-ATPase-/-) and wild-type (WT) mice to investigate theeffectof V-ATPase deficiency on spermatocyte apoptosis. GC-2, amouse pachytene spermatocyte-derived cell line, was introduced in vitro experiments. The sperm count and spermatogenic apoptosis were recorded after 60 d of hypoxia exposure in HSR model. The apoptosis of GC-2 cells was detected by flow cytometry and TUNEL staining. The expression of JNK/c-Jun was evaluated by RNA-seq or western blot. The expression of DR5 and caspase-8 was evaluated by RT-qPCR and western blot. The expression of V-ATPase was determined by western blot in the presence and absence ofLenti-transcription factor EB (TFEB).C-Jun interference was used for evaluating the role of JNK in regulating the apoptosis of GC-2 cells byTUNEL and flow cytometry. The in vivo results suggested that hypoxia induced spermatogenesis reduction and downregulation of V-ATPase. Moreover, V-ATPase deficiency resulted in moresevere spermatogenesis reduction after hypoxia exposure. The spermatogenesis reduction was associated with exacerbation of spermatocyte apoptosis. Hypoxia down-regulated the transcription of V-ATPase through inhibiting TFEB and its nuclear translocation. The mRNA and protein expressions of V-ATPaseincreased after TFEB overexpression in GC-2 cells. Moreover, V-ATPase deficiency enhanced JNK/c-Jun activation and related DR-apoptotic pathwayin GC-2 cells.However,inhibition of c-Jun attenuated V-ATPase deficiency-induced GC-2 cells apoptosis in vitro and HSR in vivo. In conclusion, JNK/c-Jun was involved in the enhancement of V-ATPase-mediated HSR in V-ATPase -/- mice. V-ATPase deficiency aggravates spermatocyte apoptosis, which may account forthe poor spermatogenesis outcomes of V-ATPase-/- mice. The discoveredfunction of V-ATPase modulating spermatocyte apoptosis indicates its potential therapeutic effect against HSR.


2020 ◽  
Vol 21 (7) ◽  
pp. 2375 ◽  
Author(s):  
Zannatul Ferdous ◽  
Abderrahim Nemmar

Engineered nanomaterials (ENMs) have gained huge importance in technological advancements over the past few years. Among the various ENMs, silver nanoparticles (AgNPs) have become one of the most explored nanotechnology-derived nanostructures and have been intensively investigated for their unique physicochemical properties. The widespread commercial and biomedical application of nanosilver include its use as a catalyst and an optical receptor in cosmetics, electronics and textile engineering, as a bactericidal agent, and in wound dressings, surgical instruments, and disinfectants. This, in turn, has increased the potential for interactions of AgNPs with terrestrial and aquatic environments, as well as potential exposure and toxicity to human health. In the present review, after giving an overview of ENMs, we discuss the current advances on the physiochemical properties of AgNPs with specific emphasis on biodistribution and both in vitro and in vivo toxicity following various routes of exposure. Most in vitro studies have demonstrated the size-, dose- and coating-dependent cellular uptake of AgNPs. Following NPs exposure, in vivo biodistribution studies have reported Ag accumulation and toxicity to local as well as distant organs. Though there has been an increase in the number of studies in this area, more investigations are required to understand the mechanisms of toxicity following various modes of exposure to AgNPs.


Sign in / Sign up

Export Citation Format

Share Document