scholarly journals Interleukin 4–Producing Cd4 T Cells Arise from Different Precursors Depending on the Conditions of Antigen Exposure in Vivo

2000 ◽  
Vol 191 (4) ◽  
pp. 683-694 ◽  
Author(s):  
Gilles Foucras ◽  
Laurent Gapin ◽  
Christiane Coureau ◽  
Jean M. Kanellopoulos ◽  
Jean-Charles Guéry

The precursor origin of T helper (Th) cell subsets in vivo has been difficult to study and remains poorly investigated. We have previously shown that chronic administration of soluble protein antigen induces selective development of antigen-specific CD4 Th2 cells in genetically predisposed mouse strains. To analyze the origin of effector T cells in this model, we designed a competitive polymerase chain reaction–based approach to track public BV-J rearrangement expressed by CD4 T cells specific for hen egg white lysozyme (HEL) in BALB/c mice. We show that public T cell clones are predominantly associated with type 1 or 2 effector Th cells recovered after primary immunization in complete or incomplete Freund's adjuvant, respectively. Conversely, continuous administration of soluble antigen, which induces strong memory Th2 response, is associated with a dose-dependent reduction of public clone size by a mechanism resembling clonal anergy. Thus, soluble HEL–induced Th2 cells do not express the public complementarity determining region 3 motifs characteristic of immunogenic challenge in the presence of adjuvant. These results demonstrate that there are multiple pathways of induction of Th2 responses depending on the condition of antigen exposure in vivo, i.e., clonal immune deviation versus recruitment of a different pool of precursor cells.

2000 ◽  
Vol 191 (2) ◽  
pp. 375-380 ◽  
Author(s):  
Hisaya Akiba ◽  
Yasushi Miyahira ◽  
Machiko Atsuta ◽  
Kazuyoshi Takeda ◽  
Chiyoko Nohara ◽  
...  

Infection of inbred mouse strains with Leishmania major is a well characterized model for analysis of T helper (Th)1 and Th2 cell development in vivo. In this study, to address the role of costimulatory molecules CD27, CD30, 4-1BB, and OX40, which belong to the tumor necrosis factor receptor superfamily, in the development of Th1 and Th2 cells in vivo, we administered monoclonal antibody (mAb) against their ligands, CD70, CD30 ligand (L), 4-1BBL, and OX40L, to mice infected with L. major. Whereas anti-CD70, anti-CD30L, and anti–4-1BBL mAb exhibited no effect in either susceptible BALB/c or resistant C57BL/6 mice, the administration of anti-OX40L mAb abrogated progressive disease in BALB/c mice. Flow cytometric analysis indicated that OX40 was expressed on CD4+ T cells and OX40L was expressed on CD11c+ dendritic cells in the popliteal lymph nodes of L. major–infected BALB/c mice. In vitro stimulation of these CD4+ T cells showed that anti-OX40L mAb treatment resulted in substantially reduced production of Th2 cytokines. Moreover, this change in cytokine levels was associated with reduced levels of anti–L. major immunoglobulin (Ig)G1 and serum IgE. These results indicate that anti-OX40L mAb abrogated progressive leishmaniasis in BALB/c mice by suppressing the development of Th2 responses, substantiating a critical role of OX40–OX40L interaction in Th2 development in vivo.


1996 ◽  
Vol 183 (2) ◽  
pp. 485-497 ◽  
Author(s):  
J C Guery ◽  
F Galbiati ◽  
S Smiroldo ◽  
L Adorini

Continuous administration of soluble proteins, delivered over a 10-d period by a mini-osmotic pump implanted subcutaneously, induces a long-lasting inhibition of antigen-specific T cell proliferation in lymph node cells from BALB/c mice subsequently primed with antigen in adjuvant. The decreased T cell proliferative response is associated with a down-regulation of the T helper cell (Th)1 cytokines interleukin (IL)-2 and interferon (IFN)-gamma and with a strong increase in the secretion of the Th2 cytokines IL-4 and IL-5 by antigen specific CD4+ T cells. This is accompanied by predominant inhibition of antigen-specific antibody production of IgG2a and IgG2b, rather than IgG1 isotype. Interestingly, inhibition of Th1 and priming of Th2 cells is also induced in beta(2) microglobulin-deficient BALB/c mice, indicating that neither CD8+ nor CD4+ NK1.1+ T cells, respectively, are required. The polarization in Th2 cells is stably maintained by T cell lines, all composed of CD4+/CD8- cells expressing T cell receptor for antigen (TCR) alpha/beta chains, derived from BALB/c mice treated with continuous antigen administration, indicating that they originate from Th2 cells fully differentiated in vivo. This polarization is induced in BALB/c mice by continuous administration of any protein antigen tested, including soluble extracts from pathogenic microorganisms. Priming of Th2 cells is dose dependent and it is optimal for low rather than high doses of protein. Blocking endogenous IL-4 in vivo inhibits expansion of antigen-specific Th2 cells, but does not restore IFN-gamma production by T cells from mice treated with soluble antigen-specific Th2 cells, but does not restore IFN-gamma production by T cells from mice treated with soluble antigen, indicating the involvement of two independent mechanisms. Consistent with this, Th2 cell development, but not inhibition of Th1 cells, depends on non-major histocompatibility complex genetic predisposition, since the Th2 response is amplified in BALB/c as compared to DBA/2, C3H, or C57BL/6 mice whereas tested. These findings support the hypothesis that continuous release of low amounts of protein antigens from pathogenic microorganisms may polarize the immune response toward a Th2 phenotype in susceptible mouse strains.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yuqing Mo ◽  
Ling Ye ◽  
Hui Cai ◽  
Guiping Zhu ◽  
Jian Wang ◽  
...  

Abstract Background Serine peptidase inhibitor, clade B, member 10 (SERPINB10) contributes to allergic inflammation in asthma. However, its role in the T-helper type 2 (Th2) response of allergic asthma is not known. The goal of this study was to unveil the function of SERPINB10 in the Th2 response of allergic asthma and the mechanism by which SERPINB10 affects the viability of Th2 cells. Methods Th2 cytokines and serum levels of house dust mite (HDM)-specific IgE in bronchoalveolar lavage fluid were examined by ELISA in an HDM-induced asthma model. The number and apoptosis of Th1 and Th2 cells in mouse lungs were measured by flow cytometry. Naïve CD4 T cells from patients with asthma were cultured under appropriate polarizing conditions to generate Th1 and Th2 cells. SERPINB10 expression in polarized Th1 and Th2 cells was quantified by real-time reverse transcription-quantitative polymerase chain reaction. SERPINB10 expression was knocked down in human CD4 T cells with lentivirus. Results Knockdown of SERPINB10 expression significantly diminished HDM-induced Th2 cytokine secretion and level of HDM-specific IgE. After HDM exposure, SERPINB10-knockdown mice had diminished numbers of Th2 cells, but similar numbers of Th1 cells, compared with those in negative-control mice. Th2 cells of SERPINB10-knockdown mice were more susceptible to apoptosis than that of control mice. Stimulating T-cell receptors (TCRs) with anti-CD3 antibody caused upregulation of SERPINB10 expression in polarized Th2 cells, but not polarized Th1 cells. Knockdown of SERPINB10 expression resulted in fewer numbers and greater apoptosis of polarized Th2 cells. Conclusion Our results suggest that SERPINB10 may contribute to allergic inflammation and the Th2 response of asthma by inhibiting the apoptosis of Th2 cells.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Kristine M Wadosky ◽  
Sri N Batchu ◽  
Angie Hughson ◽  
Kathy Donlon ◽  
Craig N Morrell ◽  
...  

Introduction: Our laboratory has shown that Axl, a receptor tyrosine kinase, is important in both vascular and immune functions during deoxycorticosterone acetate (DOCA)-salt hypertension. We hypothesized that Axl activity specifically in T lymphocytes could explain the dependence of hypertension on Axl. Methods and Results: We did adoptive transfers of either Axl+/+ or Axl-/- CD4+ T cells to RAG1-/- mice that lack mature T cells. Once CD4+ T cell repopulations were confirmed, we induced DOCA-salt hypertension for 6 weeks. Systolic blood pressure (BP, mmHg) increased by 20±5 in Axl+/+RAG-/- mice after DOCA-salt, but Axl-/- RAG-/- mice had increases in BP by only 6+3 after 6 weeks of DOCA-salt. We isolated naïve CD4+ T cells from both Axl+/+ and Axl-/- littermates and primed them under either Th1 or Th2 polarizing conditions in culture. Production of interferon gamma (IFN-γ ng/mL) was significantly decreased (-23%, p<0.05) in Axl-/- (396±23) compared to Axl+/+ (512±42) under Th1-priming. However, Axl had no effect on interleukin 4 (IL-4, ng/mL) production under Th2 polarizing conditions. Intracellular staining of the Th1/Th2 cells with IFN-γ and IL-4 antibodies by flow cytometry confirmed expression of cytokines in culture media. Complete blood counts showed that Axl-/- mice had significantly lower white blood cells due to decreased numbers of lymphocytes (4.5±0.7x10 9 ) compared to Axl+/+ mice (7.8±0.7x10 9 ). We found a higher population of AnnexinV (marker of early apoptosis)-positive peripheral leukocytes in Axl-/- mice (10±1%) compared to Axl+/+ (4±1%) by flow cytometry; while the percentages of dead cells (~10%) were similar between Axl+/+ and Axl-/- mice. Conclusions: Altogether we show that expression of Axl by T cells drives salt-induced hypertension. The mechanism of Axl-dependent effects on T cells occurs via T-cell-dependent expression of the pro-inflammatory cytokine IFN-γ. In addition, Axl plays a role in inhibiting lymphocyte apoptosis in the circulation. Future work will focus on how Axl expression in T cells affects T cell-dependent vascular remodeling during hypertension.


1999 ◽  
Vol 190 (8) ◽  
pp. 1115-1122 ◽  
Author(s):  
Lucy S.K. Walker ◽  
Adam Gulbranson-Judge ◽  
Sarah Flynn ◽  
Thomas Brocker ◽  
Chandra Raykundalia ◽  
...  

Mice rendered deficient in CD28 signaling by the soluble competitor, cytotoxic T lymphocyte–associated molecule 4–immunoglobulin G1 fusion protein (CTLA4-Ig), fail to upregulate OX40 expression in vivo or form germinal centers after immunization. This is associated with impaired interleukin 4 production and a lack of CXC chemokine receptor (CXCR)5 on CD4 T cells, a chemokine receptor linked with migration into B follicles. Germinal center formation is restored in CTLA4-Ig transgenic mice by coinjection of an agonistic monoclonal antibody to CD28, but this is substantially inhibited if OX40 interactions are interrupted by simultaneous injection of an OX40-Ig fusion protein. These data suggest that CD28-dependent OX40 ligation of CD4 T cells at the time of priming is linked with upregulation of CXCR5 expression, and migration of T cells into B cell areas to support germinal center formation.


1990 ◽  
Vol 171 (1) ◽  
pp. 115-127 ◽  
Author(s):  
M D Sadick ◽  
F P Heinzel ◽  
B J Holaday ◽  
R T Pu ◽  
R S Dawkins ◽  
...  

BALB/c mice infected with Leishmania major develop fatal, progressive disease, despite an immune response characterized by expansion of CD4+ T cells in the draining lymph nodes. The immune response has been further characterized by a lack of IFN-gamma mRNA, but increased IL-4 mRNA in lymphoid tissues, and striking elevation of serum IgE. Treatment of infected BALB/c mice with rIFN-gamma at doses shown to be beneficial in other protozoan infections was insufficient to ameliorate L. major infection. In contrast, neutralization of IL-4 by six weekly injections of mAb 11B11 led to attenuation of disease in 100% of animals, and complete cure in 85%. Resolution of disease required the presence of T cells, and recovered mice remained resistant to reinfection at 12 wk. This immunity was adoptively transferable and was dependent on both CD4+ and CD8+ cells. Although administration of anti-IL-4 was associated with fourfold increase in IFN-gamma mRNA in lymph node cells draining the lesion, the coadministration of neutralizing R4 6A2 anti-IFN-gamma mAb had no effect on resistance to disease. This was in marked contrast to resolution of disease in both resistant C57BL/6- and GK1.5-pretreated BALB/c mice that was abrogated by in vivo treatment with anti-IFN-gamma. These data suggest a novel mechanism of cellular immunity established by interference with the development of Th2 cells during infection.


2005 ◽  
Vol 201 (12) ◽  
pp. 1925-1935 ◽  
Author(s):  
Birgit Sawitzki ◽  
Cherry I. Kingsley ◽  
Vanessa Oliveira ◽  
Mahzuz Karim ◽  
Manuela Herber ◽  
...  

The significance of cytokine production by CD4+ regulatory T (T reg) cells after antigen exposure in vivo and its impact on their regulatory activity remains unclear. Pretreatment with donor alloantigen under the cover of anti-CD4 therapy generates alloantigen reactive T reg cells that can prevent rejection of donor-specific skin grafts that are mediated by naive CD45RBhighCD4+ T cells. To examine the kinetics and importance of cytokine gene transcription by such alloantigen-reactive T reg cells, pretreated mice were rechallenged with donor alloantigen in vivo. CD25+CD4+ T cells, but not CD25−CD4+ T cells, showed a fivefold increase in IFN-γ mRNA expression within 24 h of reencountering alloantigen in vivo. This expression kinetic was highly antigen-specific and was of functional significance. Neutralizing IFN-γ at the time of cotransfer of alloantigen reactive T reg cells, together with CD45RBhighCD4+ effector T cells into Rag−/− skin graft recipients, resulted in skin graft necrosis in all recipients; the generation and function of alloantigen-reactive T reg cells was impaired dramatically in IFN-γ–deficient mice. These data support a unique role for IFN-γ in the functional activity of alloantigen-reactive T reg cells during the development of operational tolerance to donor alloantigens in vivo.


1993 ◽  
Vol 178 (6) ◽  
pp. 2123-2130 ◽  
Author(s):  
H Secrist ◽  
C J Chelen ◽  
Y Wen ◽  
J D Marshall ◽  
D T Umetsu

Allergen specific CD4+ T cell clones generated from allergic individuals have been shown to produce increased levels of the cytokine interleukin 4 (IL-4), compared to allergen specific clones generated from nonallergic individuals. This difference between CD4+ T cells from allergic and nonallergic individuals with regard to cytokine production in response to allergen is thought to be responsible for the development of allergic disease with increased IgE synthesis in atopic individuals. We examined the production of IL-4 in subjects with allergic rhinitis and in allergic individuals treated with allergen immunotherapy, a treatment which involves the subcutaneous administration of increasing doses of allergen and which is highly effective and beneficial for individuals with severe allergic rhinitis. We demonstrated that the quantity of IL-4 produced by allergen specific memory CD4+ T cells from allergic individuals could be considerably reduced by in vivo treatment with allergen (allergen immunotherapy). Immunotherapy reduced IL-4 production by allergen specific CD4+ T cells to levels observed with T cells from nonallergic subjects, or to levels induced with nonallergic antigens such as tetanus toxoid. In most cases the levels of IL-4 produced were inversely related to the length of time on immunotherapy. These observations indicate that immunotherapy accomplishes its clinical effects by reducing IL-4 synthesis in allergen specific CD4+ T cells. In addition, these observations indicate that the cytokine profiles of memory CD4+ T cells can indeed be altered by in vivo therapies. Thus, the cytokine profiles of memory CD4+ T cells are mutable, and are not fixed as had been suggested by studies of murine CD4+ memory T cells. Finally, treatment of allergic diseases with allergen immunotherapy may be a model for other diseases which may require therapies that alter inappropriate cytokine profiles of memory CD4+ T cells.


2009 ◽  
Vol 206 (5) ◽  
pp. 1001-1007 ◽  
Author(s):  
Irah L. King ◽  
Markus Mohrs

Interleukin (IL)-4 is the quintessential T helper type 2 (Th2) cytokine produced by CD4+ T cells in response to helminth infection. IL-4 not only promotes the differentiation of Th2 cells but is also critical for immunoglobulin (Ig) G1 and IgE isotype-switched antibody responses. Despite the IL-4–mediated link between Th2 cells and B lymphocytes, the location of IL-4–producing T cells in the lymph nodes is currently unclear. Using IL-4 dual reporter mice, we examined the Th2 response and IL-4 production in the draining mesenteric lymph nodes during infection with the enteric nematode Heligmosomoides polygyrus. We show that although IL-4–competent Th2 cells are found throughout the B and T cell areas, IL-4–producing Th2 cells are restricted to the B cell follicles and associate with germinal centers. Consistent with their localization, IL-4 producers express high levels of CXCR5, ICOS, PD-1, IL-21, and BCL-6, a phenotype characteristic of T follicular helper (Tfh) cells. Although IL-4 was dispensable for the generation of Th2 and Tfh cells, its deletion resulted in defective B cell expansion and maturation. Our report reveals the compartmentalization of Th2 priming and IL-4 production in the lymph nodes during infection, and identifies Tfh cells as the dominant source of IL-4 in vivo.


2002 ◽  
Vol 70 (10) ◽  
pp. 5715-5720 ◽  
Author(s):  
Jian Li ◽  
Udaikumar M. Padigel ◽  
Phillip Scott ◽  
Jay P. Farrell

ABSTRACT Following infection of susceptible BALB/c mice with Leishmania major, early production of interleukin-4 (IL-4) is associated with the development of a nonprotective Th2 response and the development of progressive disease. Treatment of mice with IL-12 at the time of infection can promote the activation of a protective Th1 response; however, IL-12 treatment of mice with established infections has little effect on the progress of lesion development. This may be due to a down-regulation of the IL-12 receptor β2 chain (IL-12Rβ2) that accompanies the expansion of IL-4-producing Th2 cells. We have examined whether prostaglandins function to regulate in vivo responsiveness to IL-12. Mice treated with indomethacin are responsive to treatment with exogenous IL-12 through at least the first 2 weeks of infection and, unlike control mice treated with IL-12, develop an enhanced Th1-type response associated with increased enhanced resistance to infection. Cells from indomethacin-treated mice also exhibit enhanced production of gamma interferon (IFN-γ) following in vitro stimulation with IL-12. Although in vivo indomethacin treatment did not appear to influence IL-12 production in infected mice, cells from indomethacin-treated mice did express higher levels of IL-12Rβ2, suggesting that prostaglandins may play a role in the loss of IL-12 responsiveness observed during nonhealing L. major infections.


Sign in / Sign up

Export Citation Format

Share Document