scholarly journals THE BEHAVIOR OF POX VIRUSES IN THE RESPIRATORY TRACT

1941 ◽  
Vol 74 (3) ◽  
pp. 203-212 ◽  
Author(s):  
John B. Nelson

Fowl pox virus from active skin lesions was established in the upper respiratory tract of normal chickens by nasal instillation and maintained for 12 successive passages. The nasal infection was not communicable by direct contact but did afford protection, for at least 6 weeks, against subsequent development of the virus in the skin. Multiplication of the virus in the nasal passages was only irregularly attended by specific mucosal changes and was not accompanied by the vigorous counter-reaction engendered by the causal agents of roup. The same strain of virus on propagation in embryonated eggs also survived and multiplied in the nasal tract but with somewhat reduced activity, the 34th egg transfer failing to afford complete protection. Nasal instillation in mice was followed only by a reaction in the lung from which the virus was recoverable through the 7th day.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huibi Cao ◽  
Juntao Mai ◽  
Zhichang Zhou ◽  
Zhijie Li ◽  
Rongqi Duan ◽  
...  

Abstract Background The ongoing COVID-19 pandemic has resulted in 185 million recorded cases and over 4 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. Results Here, we describe a novel, intranasally delivered COVID-19 vaccine based on a helper-dependent adenoviral (HD-Ad) vector. The vaccine (HD-Ad_RBD) produces a soluble secreted form of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and we show it induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. Conclusion Our approaches provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants.


2021 ◽  
pp. eabh0755
Author(s):  
Neeltje van Doremalen ◽  
Jyothi N. Purushotham ◽  
Jonathan E. Schulz ◽  
Myndi G. Holbrook ◽  
Trenton Bushmaker ◽  
...  

ChAdOx1 nCoV-19/AZD1222 is an approved adenovirus-based vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently being deployed globally. Previous studies in rhesus macaques revealed that intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 provided protection against pneumonia but did not reduce shedding of SARS-CoV-2 from the upper respiratory tract. Here, we investigated whether intranasally administered ChAdOx1 nCoV-19 reduces detection of virus in nasal swabs after challenging vaccinated macaques and hamsters with SARS-CoV-2 carrying a D614G mutation in the spike protein. Viral loads in swabs obtained from intranasally vaccinated hamsters were decreased compared to control hamsters, and no viral RNA or infectious virus was found in lung tissue after a direct challenge or after direct contact with infected hamsters. Intranasal vaccination of rhesus macaques resulted in reduced virus concentrations in nasal swabs and a reduction in viral loads in bronchoalveolar lavage and lower respiratory tract tissue. Intranasal vaccination with ChAdOx1 nCoV-19/AZD1222 reduced virus concentrations in nasal swabs in two different SARS-CoV-2 animal models, warranting further investigation as a potential vaccination route for COVID-19 vaccines.


1988 ◽  
Vol 102 (12) ◽  
pp. 1107-1110 ◽  
Author(s):  
D. W. Skinner ◽  
S. H. Richards

The presence of upper respiratory tract obstruction in patients with acromegaly has been described. The main sites for obstruction were previously thought to be laryngeal and oropharyngeal. This reviews 65 patients with acromegaly and 27 patients with a prolactinoma treated by trans-ethmoidal hypophysectomy. The results confirmed a very high incidence of polyp formation and mucosal hypertrophy within both the sphenoid (88 per cent) and ethmoidal (62 per cent) sinuses of the acromegalic patients. The histological appearances of the mucosal hypertrophy and polyposis confirmed no specific features attributable to acromegaly. Patient age and serum H.G.H. level do not appear to be significance factors. These findings within the para-nasal sinuses have never previously been reported.


2001 ◽  
Vol 69 (4) ◽  
pp. 2328-2338 ◽  
Author(s):  
Lisa M. Hodge ◽  
Mariarosaria Marinaro ◽  
Harlan P. Jones ◽  
Jerry R. McGhee ◽  
Hiroshi Kiyono ◽  
...  

ABSTRACT The purpose of the present study was to determine the extent of immunologic responses, particularly immunopathologic responses, within the upper and lower respiratory tracts after intranasal immunization using the mucosal adjuvant cholera toxin (CT). BALB/c mice were nasally immunized with influenza virus vaccine combined with CT. The inclusion of the mucosal adjuvant CT clearly enhanced generation of antibody responses in both the nasal passages and lungs. After nasal immunization, antigen-specific immunoglobulin A (IgA) antibody-forming cells dominated antibody responses throughout the respiratory tract. However, IgG responses were significant in lungs but not in nasal passages. Furthermore, parenteral immunization did not enhance humoral immunity in the upper respiratory tract even after a nasal challenge, whereas extrapulmonary lymphoid responses enhanced responses in the lung. After nasal immunization, inflammatory reactions, characterized by mononuclear cell infiltration, developed within the lungs of mice but not in nasal passages. Lowering dosages of CT reduced, but did not eliminate, these adverse reactions without compromising adjuvancy. Serum IgE responses were also enhanced in a dose-dependent manner by inclusion of CT. In summary, there are differences in the generation of humoral immunity between the upper respiratory tract and the lung. As the upper respiratory tract is in a separate compartment of the immune system from that stimulated by parenteral immunization, nasal immunization is an optimal approach to generate immunity throughout the respiratory tract. Despite the promise of nasal immunization, there is also the potential to develop adverse immunopathologic reactions characterized by pulmonary airway inflammation and IgE production.


2021 ◽  
Author(s):  
Devanshi R. Patel ◽  
Cassandra J. Field ◽  
Kayla M. Septer ◽  
Derek G. Sim ◽  
Matthew J. Jones ◽  
...  

SARS-CoV-2 has initiated a global pandemic and several vaccines have now received emergency use authorization. Using the reference strain SARS-CoV-2 USA-WA1/2020, we evaluated modes of transmission and the ability of prior infection or vaccine-induced immunity to protect against infection in ferrets. Ferrets were semi-permissive to infection with the USA-WA1/2020 isolate. When transmission was assessed via the detection of vRNA at multiple timepoints, direct contact transmission was efficient to 3/3 and 3/4 contact animals in two respective studies, while respiratory droplet transmission was poor to only 1/4 contact animals. To determine if previously infected ferrets were protected against re-infection, ferrets were re-challenged 28 or 56 days post-infection. Following viral challenge, no infectious virus was recovered in nasal wash samples. In addition, levels of vRNA in the nasal wash were several orders of magnitude lower than during primary infection, and vRNA was rapidly cleared. To determine if intramuscular vaccination protected ferrets, ferrets were vaccinated using a prime-boost strategy with the S-protein receptor-binding domain formulated with an oil-in-water adjuvant. Upon viral challenge, none of the mock or vaccinated animals were protected against infection, and there were no significant differences in vRNA or infectious virus titers in the nasal wash. Combined these studies demonstrate that in ferrets direct contact is the predominant mode of transmission of the USA-WA1/2020 isolate and immunity to SARS-CoV-2 is maintained for at least 56 days. Our studies also indicate protection of the upper respiratory tract against SARS-CoV-2 will require vaccine strategies that mimic natural infection or induce site-specific immunity. Importance: The SARS-CoV-2 USA-WA1/2020 strain is a CDC reference strain used by multiple research laboratories. Here, we show the predominant mode of transmission of this isolate in ferrets is by direct contact. We further demonstrate ferrets are protected against re-infection for at least 56 days even when levels of neutralizing antibodies are low or undetectable. Last, we show that when ferrets were vaccinated by the intramuscular route to induce antibodies against SARS-CoV-2, ferrets remain susceptible to infection of the upper respiratory tract. Collectively, these studies suggest protection of the upper respiratory tract will require vaccine approaches that mimic natural infection.


2020 ◽  
Author(s):  
Devanshi R. Patel ◽  
Cassandra J. Field ◽  
Kayla M. Septer ◽  
Derek G. Sim ◽  
Matthew J. Jones ◽  
...  

AbstractSARS-CoV-2 has initiated a global pandemic and vaccines are being rapidly developed. Using the reference strain SARS-CoV-2 USA-WA1/2020, we evaluated modes of transmission and the ability of prior infection or vaccine-induced immunity to protect against infection in ferrets. Ferrets were semi-permissive to infection with the USA-WA1/2020 isolate. When transmission was assessed via the detection of vRNA at multiple timepoints, direct contact transmission was efficient to 3/3 and 3/4 contact animals in two respective studies, while respiratory transmission was poor to only 1/4 contact animals. To assess the durability of immunity, ferrets were re-challenged 28 or 56 days post-primary infection. Following viral challenge, no infectious virus was recovered in nasal wash samples. In addition, levels of vRNA in the nasal wash were several orders of magnitude lower than during primary infection, and vRNA was rapidly cleared. To determine if intramuscular vaccination protected ferrets against infection, ferrets were vaccinated using a prime-boost strategy with the S-protein receptor-binding domain formulated with an oil-in-water adjuvant. Upon viral challenge, none of the mock or vaccinated animals were protected against infection, and there were no significant differences in vRNA or infectious virus titers in the nasal wash. Combined these studies demonstrate that in ferrets direct contact is the predominant mode of transmission of the SARS-CoV-2 USA-WA1/2020 isolate and immunity to SARS-CoV-2 is maintained for at least 56 days. Our studies also indicate protection of the upper respiratory tract against SARS-CoV-2 will require vaccine strategies that mimic natural infection or induce site-specific immunity.ImportanceThe SARS-CoV-2 USA-WA1/2020 strain is a CDC reference strain used by multiple research laboratories. Here, we show the predominant mode of transmission of this isolate in ferrets is by direct contact. We further demonstrate ferrets are protected against re-infection for at least 56 days even when levels of neutralizing antibodies are low or undetectable. Last, we show that when ferrets were vaccinated by the intramuscular route to induce antibodies against SARS-CoV-2, ferrets remain susceptible to infection of the upper respiratory tract. Collectively, these studies suggest protection of the upper respiratory tract will require vaccine approaches that mimic natural infection.


1970 ◽  
Vol 8 (1) ◽  
pp. 31-33
Author(s):  
BMM Kayastha ◽  
L Lama ◽  
P Shrestha ◽  
R Shrestha ◽  
A Karki

Sweet's syndrome is a disorder characterized by fever and painful skin lesions. The condition starts suddenly with the appearance of red, slightly raised tender plaques, usually on the back, arms, face or neck. Women are most at risk of Sweet's syndrome, predominantly between 30-50 years of age who have recently had an upper respiratory tract infection. Here we present a 70 years old lady who came with fever and tender erythematous plaques on trunk and limbs. On investigation, leucocytosis with raised ESR was found and the skin biopsy was consistent with Sweet's syndrome. There was dramatic improvement with systemic corticosteroid.DOI: http://dx.doi.org/10.3126/njdvl.v8i1.5716  Nepal Journal of Dermatology, Venereology & Leprology 8(1) 2009 31-33


Sign in / Sign up

Export Citation Format

Share Document