scholarly journals External pH effects on the depolarization-activated K channels in guard cell protoplasts of Vicia faba.

1994 ◽  
Vol 103 (5) ◽  
pp. 807-831 ◽  
Author(s):  
N Ilan ◽  
A Schwartz ◽  
N Moran

Previous studies reveal that the pH of the apoplastic solution in the guard cell walls may vary between 7.2 and 5.1 in closed and open stomata, respectively. During these aperture and pH changes, massive K+ fluxes cross the cellular plasma membrane driving the osmotic turgor and volume changes of guard cells. Therefore, we examined the effect of extracellular pH on the depolarization-activated K channels (KD channels), which constitute the K+ efflux pathway, in the plasma membrane of Vicia faba guard cell protoplasts. We used patch clamp, both in whole cells as well as in excised outside-out membrane patches. Approximately 500 KD channels, at least, could be activated by depolarization in one protoplast (density: approximately 0.6 micron-2). Acidification from ph 8.1 to 4.4 decreased markedly the whole-cell conductance, GK, of the KD channels, shifted its voltage dependence, GK-EM, to the right on the voltage axis, slowed the rate of activation and increased the rate of deactivation, whereas the single channel conductance was not affected significantly. Based on the GK-EM shifts, the estimated average negative surface charge spacing near the KD channel is 39 A. To quantify the effects of protons on the rates of transitions between the hypothesized conformational states of the channels, we fitted the experimental macroscopic steady state conductance-voltage relationship and the voltage dependence of time constants of activation and deactivation, simultaneously, with a sequential three-state model CCO. In terms of this model, protonation affects the voltage-dependent properties via a decrease in localized, rather than homogeneous, surface charge sensed by the gating moieties. In terms of either the CO or CCO model, the protonation of a site with a pKa of 4.8 decreases the voltage-independent number of channels, N, that are available for activation by depolarization.

1988 ◽  
Vol 92 (5) ◽  
pp. 667-683 ◽  
Author(s):  
J I Schroeder

Electrical properties of the plasma membrane of guard cell protoplasts isolated from stomates of Vicia faba leaves were studied by application of the whole-cell configuration of the patch-clamp technique. The two types of K+ currents that have recently been identified in guard cells may allow efflux of K+ during stomatal closing, and uptake of K+ during stomatal opening (Schroeder et al., 1987). A detailed characterization of ion transport properties of the inward-rectifying (IK+,in) and the outward-rectifying (IK+,out) K+ conductance is presented here. The permeability ratios of IK+,in and IK+,out currents for K+ over monovalent alkali metal ions were determined. The resulting permeability sequences (PK+ greater than PRb+ greater than PNa+ greater than PLi+ much greater than PCs+) corresponded closely to the ion specificity of guard cell movements in V. faba. Neither K+ currents exhibited significant inactivation when K+ channels were activated for prolonged periods (greater than 10 min). The absence of inactivation may permit long durations of K+ fluxes, which occur during guard cell movements. Activation potentials of inward K+ currents were not shifted when external K+ concentrations were changed. This differs strongly from the behavior of inward-rectifying K+ channels in animal tissue. Blue light and fusicoccin induce hyperpolarization by stimulation of an electrogenic pump. From slow-whole-cell recordings it was concluded that electrogenic pumps require cytoplasmic substrates for full activation and that the magnitude of the pump current is sufficient to drive K+ uptake through IK+,in channels. First, direct evidence was gained for the hypothesis that IK+,in channels are a molecular pathway for K+ accumulation by the finding that IK+,in was blocked by Al3+ ions, which are known to inhibit stomatal opening but not closing. The results presented in this study strongly support a prominent role for IK+,in and IK+,out channels in K+ transport across the plasma membrane of guard cells.


1987 ◽  
Vol 84 (12) ◽  
pp. 4108-4112 ◽  
Author(s):  
J. I. Schroeder ◽  
K. Raschke ◽  
E. Neher

Nature ◽  
1984 ◽  
Vol 312 (5992) ◽  
pp. 361-362 ◽  
Author(s):  
J. I. Schroeder ◽  
R. Hedrich ◽  
J. M. Fernandez

Nature ◽  
1986 ◽  
Vol 319 (6051) ◽  
pp. 324-326 ◽  
Author(s):  
K. Shimazaki ◽  
M. Iino ◽  
E. Zeiger

1996 ◽  
Vol 23 (3) ◽  
pp. 349 ◽  
Author(s):  
J Kourie

Data obtained using the whole-celi configuration of the patch-clamp technique reveal that characteristics of the inward rectifying K+ current across the plasma membrane of protoplasts isolated from mesophyll cells of leaves of oat (Avena sativa) are modified by increasing concentrations or removing the extracellular Ca2+. The whole-cell membrane current reveals two components. The first component an initial current II* which is the sum of two currents: (a) a linear ohmic leak current passing through non-gated channels, liNGC, and (b) a rectifying inward K+ current passing through inward rectifying gated K+ channels, IKi, that are instantaneously open. The second component of the membrane current at the steady state Iss is a time-dependent K+ current IKss defined as Iss-IiNGC and passes through inward rectifying gated K+ channels. The tail K+ current, IKT, is also defined as IT-IiNGC. Raising external calcium concentration, [Ca2+]o, from 0.1 mM to 10 mM blocked the inward rectifying currents IKi, IKss and IKT. The voltage-dependence of the activation time constant (τa) for time-dependent KC current IKss was not altered significantly by increasing [Ca2+]o whereas the deactivation time constant (τd) of the IKT increased from 16 ms to 30 ms at a Vm of -100 mV. Removal of [Ca2+]o increased the amplitude and altered the characteristics of the inward rectifying K+ current. Ten minutes after the removal of [Ca2+]o the increase in IKi was 3.5-fold larger than the increase in IKss. Furthermore, removing [Ca2+]o hastened the activation of IKss and the deactivation of IKT. However, the deactivation time constant (Td) remained dependent on membrane voltage (Vm). Extracellular Ca2+ may modulate the function of mesophyll cells by regulating K+ transport through the inward rectifying K+ channels and this may have significant implications for photosynthesis and cell expansion.


1982 ◽  
Vol 70 (6) ◽  
pp. 1700-1703 ◽  
Author(s):  
Peter H. Brown ◽  
William H. Outlaw

Sign in / Sign up

Export Citation Format

Share Document