scholarly journals Voltage dependence of K+ channels in guard-cell protoplasts

1987 ◽  
Vol 84 (12) ◽  
pp. 4108-4112 ◽  
Author(s):  
J. I. Schroeder ◽  
K. Raschke ◽  
E. Neher
1994 ◽  
Vol 103 (5) ◽  
pp. 807-831 ◽  
Author(s):  
N Ilan ◽  
A Schwartz ◽  
N Moran

Previous studies reveal that the pH of the apoplastic solution in the guard cell walls may vary between 7.2 and 5.1 in closed and open stomata, respectively. During these aperture and pH changes, massive K+ fluxes cross the cellular plasma membrane driving the osmotic turgor and volume changes of guard cells. Therefore, we examined the effect of extracellular pH on the depolarization-activated K channels (KD channels), which constitute the K+ efflux pathway, in the plasma membrane of Vicia faba guard cell protoplasts. We used patch clamp, both in whole cells as well as in excised outside-out membrane patches. Approximately 500 KD channels, at least, could be activated by depolarization in one protoplast (density: approximately 0.6 micron-2). Acidification from ph 8.1 to 4.4 decreased markedly the whole-cell conductance, GK, of the KD channels, shifted its voltage dependence, GK-EM, to the right on the voltage axis, slowed the rate of activation and increased the rate of deactivation, whereas the single channel conductance was not affected significantly. Based on the GK-EM shifts, the estimated average negative surface charge spacing near the KD channel is 39 A. To quantify the effects of protons on the rates of transitions between the hypothesized conformational states of the channels, we fitted the experimental macroscopic steady state conductance-voltage relationship and the voltage dependence of time constants of activation and deactivation, simultaneously, with a sequential three-state model CCO. In terms of this model, protonation affects the voltage-dependent properties via a decrease in localized, rather than homogeneous, surface charge sensed by the gating moieties. In terms of either the CO or CCO model, the protonation of a site with a pKa of 4.8 decreases the voltage-independent number of channels, N, that are available for activation by depolarization.


1993 ◽  
Vol 44 (10) ◽  
pp. 1569-1577 ◽  
Author(s):  
WILFRIED DIEKMANN ◽  
RAINER HEDRICH ◽  
KLAUS RASCHKE ◽  
DAVID G. ROBINSON

1982 ◽  
Vol 33 (5) ◽  
pp. 996-1003 ◽  
Author(s):  
HEIDE SCHNABL ◽  
CHRISTINE ELBERT ◽  
GERDA KRÄMER

1997 ◽  
Vol 110 (5) ◽  
pp. 579-589 ◽  
Author(s):  
Riccardo Olcese ◽  
Ramón Latorre ◽  
Ligia Toro ◽  
Francisco Bezanilla ◽  
Enrico Stefani

Prolonged depolarization induces a slow inactivation process in some K+ channels. We have studied ionic and gating currents during long depolarizations in the mutant Shaker H4-Δ(6–46) K+ channel and in the nonconducting mutant (Shaker H4-Δ(6–46)-W434F). These channels lack the amino terminus that confers the fast (N-type) inactivation (Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1991. Neuron. 7:547–556). Channels were expressed in oocytes and currents were measured with the cut-open-oocyte and patch-clamp techniques. In both clones, the curves describing the voltage dependence of the charge movement were shifted toward more negative potentials when the holding potential was maintained at depolarized potentials. The evidences that this new voltage dependence of the charge movement in the depolarized condition is associated with the process of slow inactivation are the following: (a) the installation of both the slow inactivation of the ionic current and the inactivation of the charge in response to a sustained 1-min depolarization to 0 mV followed the same time course; and (b) the recovery from inactivation of both ionic and gating currents (induced by repolarizations to −90 mV after a 1-min inactivating pulse at 0 mV) also followed a similar time course. Although prolonged depolarizations induce inactivation of the majority of the channels, a small fraction remains non–slow inactivated. The voltage dependence of this fraction of channels remained unaltered, suggesting that their activation pathway was unmodified by prolonged depolarization. The data could be fitted to a sequential model for Shaker K+ channels (Bezanilla, F., E. Perozo, and E. Stefani. 1994. Biophys. J. 66:1011–1021), with the addition of a series of parallel nonconducting (inactivated) states that become populated during prolonged depolarization. The data suggest that prolonged depolarization modifies the conformation of the voltage sensor and that this change can be associated with the process of slow inactivation.


2008 ◽  
Vol 2008 (6) ◽  
pp. pdb.prot5014-pdb.prot5014 ◽  
Author(s):  
W. Zhang ◽  
S. E. Nilson ◽  
S. M. Assmann

Nature ◽  
1984 ◽  
Vol 312 (5992) ◽  
pp. 361-362 ◽  
Author(s):  
J. I. Schroeder ◽  
R. Hedrich ◽  
J. M. Fernandez

Sign in / Sign up

Export Citation Format

Share Document