scholarly journals Conjoint Control of Hippocampal Place Cell Firing by Two Visual Stimuli

2000 ◽  
Vol 116 (2) ◽  
pp. 191-210 ◽  
Author(s):  
André A. Fenton ◽  
Gyorgy Csizmadia ◽  
Robert U. Muller

To better understand how hippocampal place cell activity is controlled by sensory stimuli, and to further elucidate the nature of the environmental representation provided by place cells, we have made recordings in the presence of two distinct visual stimuli under standard conditions and after several manipulations of these stimuli. In line with a great deal of earlier work, we find that place cell activity is constant when repeated recordings are made in the standard conditions in which the centers of the two stimuli, a black card and a white card, are separated by 135° on the wall of a cylindrical recording chamber. Rotating the two stimuli by 45° causes equal rotations of place cell firing fields. Removing either card and rotating the other card also causes fields to rotate equally, showing that the two stimuli are individually salient. Increasing or decreasing the card separation (card reconfiguration) causes a topological distortion of the representation of the cylinder floor such that field centers move relative to each other. We also found that either kind of reconfiguration induces a position-independent decrease in the intensity of place cell firing. We argue that these results are not compatible with either of two previously stated views of the place cell representation; namely, a nonspatial theory in which each place cell is tuned to an arbitrarily selected subset of available stimuli or a rigid map theory. We propose that our results imply that the representation is map-like but not rigid; it is capable of undergoing stretches without altering the local arrangement of firing fields.

2000 ◽  
Vol 116 (2) ◽  
pp. 211-222 ◽  
Author(s):  
André A. Fenton ◽  
Gyorgy Csizmadia ◽  
Robert U. Muller

Changing the angular separation between two visual stimuli attached to the wall of a recording cylinder causes the firing fields of place cells to move relative to each other, as though the representation of the floor undergoes a topological distortion. The displacement of the firing field center of each cell is a vector whose length is equal to the linear displacement and whose angle indicates the direction that the field center moves in the environment. Based on the observation that neighboring fields move in similar ways, whereas widely separated fields tend to move relative to each other, we develop an empirical vector-field model that accounts for the stated effects of changing the card separation. We then go on to show that the same vector-field equation predicts additional aspects of the experimental results. In one example, we demonstrate that place cell firing fields undergo distortions of shape after the card separation is changed, as though different parts of the same field are affected by the stimulus constellation in the same fashion as fields at different locations. We conclude that the vector-field formalism reflects the organization of the place-cell representation of the environment for the current case, and through suitable modification may be very useful for describing motions of firing patterns induced by a wide variety of stimulus manipulations.


Neuroscience ◽  
2003 ◽  
Vol 117 (4) ◽  
pp. 1025-1035 ◽  
Author(s):  
T Kobayashi ◽  
A.H Tran ◽  
H Nishijo ◽  
T Ono ◽  
G Matsumoto

Cell Reports ◽  
2018 ◽  
Vol 23 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Maria Diamantaki ◽  
Stefano Coletta ◽  
Khaled Nasr ◽  
Roxana Zeraati ◽  
Sophie Laturnus ◽  
...  

Neuroscience ◽  
2008 ◽  
Vol 157 (1) ◽  
pp. 254-270 ◽  
Author(s):  
S.A. Ho ◽  
E. Hori ◽  
T. Kobayashi ◽  
K. Umeno ◽  
A.H. Tran ◽  
...  

2020 ◽  
Author(s):  
Ryan E. Harvey ◽  
Laura E. Berkowitz ◽  
Daniel D. Savage ◽  
Derek A. Hamilton ◽  
Benjamin J. Clark

SummaryPrenatal alcohol exposure (PAE) leads to profound deficits in spatial memory and synaptic and cellular alterations to the hippocampus that last into adulthood. Neurons in the hippocampus, called place cells, discharge as an animal enters specific places in an environment, establish distinct ensemble codes for familiar and novel places, and are modulated by local theta rhythms. Spatial memory is thought to critically depend on the integrity of hippocampal place cell firing. We therefore tested the hypothesis that hippocampal place cell firing is impaired after PAE by performing in-vivo recordings from the hippocampi (CA1 and CA3) of moderate PAE and control adult rats. Our results show that hippocampal CA3 neurons from PAE rats have reduced spatial tuning. Secondly, CA1 and CA3 neurons from PAE rats are less likely to orthogonalize their firing between directions of travel on a linear track and between contexts in an open arena compared to control neurons. Lastly, reductions in the number of hippocampal place cells exhibiting significant theta rhythmicity and phase precession were observed which may suggest changes to hippocampal microcircuit function. Together, the reduced spatial tuning and sensitivity to context provides a neural systems-level mechanism to explain spatial memory impairment after moderate PAE.


2004 ◽  
Vol 15 (2) ◽  
Author(s):  
Β. Poucet ◽  
P.P. Lenck-Santini ◽  
V. Hok ◽  
E. Save ◽  
J.P. Banquet ◽  
...  

2009 ◽  
Vol 29 (21) ◽  
pp. 6840-6850 ◽  
Author(s):  
J. T. R. Isaac ◽  
K. A. Buchanan ◽  
R. U. Muller ◽  
J. R. Mellor

Sign in / Sign up

Export Citation Format

Share Document