cell stimulation
Recently Published Documents


TOTAL DOCUMENTS

579
(FIVE YEARS 64)

H-INDEX

58
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Birgitta Lindqvist ◽  
Wlaa Assi ◽  
Julie Roux ◽  
Luca Love ◽  
Bianca B. Jütte ◽  
...  

AbstractThe reservoir of latently HIV-1 infected cells is heterogeneous. To achieve an HIV-1 cure, the reservoir of activatable proviruses should be eliminated while permanently silenced proviruses may be tolerated. We have developed a method to assess the proviral nuclear microenvironment in single cells. In latently HIV-1 infected cells, a zinc finger protein tethered to the HIV-1 promoter produced a fluorescent signal as a protein of interest came in its proximity, such as the viral transactivator Tat when recruited to the nascent RNA. Tat is essential for viral replication. In these cells we assessed the proviral activation and chromatin composition. By linking Tat recruitment to proviral activity, we dissected the mechanisms of HIV-1 latency reversal and the consequences of HIV-1 production. A pulse of promoter-associated Tat was identified that contrasted to the continuous production of viral proteins. As expected, promoter H3K4me3 led to substantial expression of the provirus following T cell stimulation. However, the activation-induced cell cycle arrest and death led to a surviving cell fraction with proviruses encapsulated in repressive chromatin. Further, this cellular model was used to reveal mechanisms of action of small molecules. In a proof-of-concept study we determined the effect of an enhancer specific CBP/P300-inhibitor on HIV-1 latency reversal. Only proviruses resembling active enhancers, associated with H3K4me1 and H3K27ac, efficiently recruited Tat. Tat-independent HIV-1 latency reversal of unknown significance still occurred. We present a method for single cell assessment of the microenvironment of the latent HIV-1 proviruses, used here to reveal how T cell stimulation modulates the proviral activity and how the subsequent fate of the infected cell depends on the chromatin context.


2021 ◽  
Author(s):  
Kenneth Eagle ◽  
Taku Harada ◽  
Jeremie Kalfon ◽  
Monika Perez ◽  
Yaser Heshmati ◽  
...  

Relapse of acute myeloid leukemia (AML) after allogeneic bone marrow transplantation (alloSCT) has been linked to immune evasion due to reduced expression of major histocompatibility complex class II (MHC-II) proteins through unknown mechanisms. We developed CORENODE, a computational algorithm for genome-wide transcription network decomposition, that identified the transcription factors (TFs) IRF8 and MEF2C as positive regulators and MYB and MEIS1 as negative regulators of MHC-II expression in AML cells. We show that reduced MHC-II expression at relapse is transcriptionally driven by combinatorial changes in the levels of these TFs, acting both independently and through the MHC-II coactivator CIITA. Beyond the MHC-II genes, MYB and IRF8 antagonistically regulate a broad genetic program responsible for cytokine signaling and T-cell stimulation that displays reduced expression at relapse. A small number of cells with altered TF levels and silenced MHC-II expression are present at the time of initial leukemia diagnosis, likely contributing to eventual relapse. Our findings reveal an adaptive transcriptional mechanism of AML evolution after allogenic transplantation whereby combinatorial fluctuations of TF levels under immune pressure result in selection of cells with a silenced T-cell stimulation program.


2021 ◽  
Author(s):  
Kristen Hurov ◽  
Johanna Lahdenranta ◽  
Punit Upadhyaya ◽  
Drasti Kanakia ◽  
Elizabeth Repash ◽  
...  
Keyword(s):  

Author(s):  
Lin Zhou ◽  
Nahoko Kasai ◽  
Hizuru Nakajima ◽  
Shungo Kato ◽  
Sifeng Mao ◽  
...  

Author(s):  
Maria Stefania Massaro ◽  
Richard Pálek ◽  
Jáchym Rosendorf ◽  
Lenka Červenková ◽  
Václav Liška ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document