spatial navigation
Recently Published Documents


TOTAL DOCUMENTS

823
(FIVE YEARS 242)

H-INDEX

64
(FIVE YEARS 8)

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Taylor F. Levine ◽  
Catherine M. Roe ◽  
Ganesh M. Babulal ◽  
Anne M. Fagan ◽  
Denise Head

2021 ◽  
pp. 1-14
Author(s):  
Assaf Harel ◽  
Jeffery D. Nador ◽  
Michael F. Bonner ◽  
Russell A. Epstein

Abstract Scene perception and spatial navigation are interdependent cognitive functions, and there is increasing evidence that cortical areas that process perceptual scene properties also carry information about the potential for navigation in the environment (navigational affordances). However, the temporal stages by which visual information is transformed into navigationally relevant information are not yet known. We hypothesized that navigational affordances are encoded during perceptual processing and therefore should modulate early visually evoked ERPs, especially the scene-selective P2 component. To test this idea, we recorded ERPs from participants while they passively viewed computer-generated room scenes matched in visual complexity. By simply changing the number of doors (no doors, 1 door, 2 doors, 3 doors), we were able to systematically vary the number of pathways that afford movement in the local environment, while keeping the overall size and shape of the environment constant. We found that rooms with no doors evoked a higher P2 response than rooms with three doors, consistent with prior research reporting higher P2 amplitude to closed relative to open scenes. Moreover, we found P2 amplitude scaled linearly with the number of doors in the scenes. Navigability effects on the ERP waveform were also observed in a multivariate analysis, which showed significant decoding of the number of doors and their location at earlier time windows. Together, our results suggest that navigational affordances are represented in the early stages of scene perception. This complements research showing that the occipital place area automatically encodes the structure of navigable space and strengthens the link between scene perception and navigation.


2021 ◽  
pp. JN-RM-1130-21
Author(s):  
Juan P. Beccaria ◽  
Carlos A. Pretell Annan ◽  
Ettel Keifman ◽  
M. Gustavo Murer ◽  
Juan E. Belforte

2021 ◽  
Vol 12 ◽  
Author(s):  
Thanh Tin Nguyen ◽  
Gi-Sung Nam ◽  
Jin-Ju Kang ◽  
Gyu Cheol Han ◽  
Ji-Soo Kim ◽  
...  

This study aimed to investigate the disparity in locomotor and spatial memory deficits caused by left- or right-sided unilateral vestibular deafferentation (UVD) using a mouse model of unilateral labyrinthectomy (UL) and to examine the effects of galvanic vestibular stimulation (GVS) on the deficits over 14 days. Five experimental groups were established: the left-sided and right-sided UL (Lt.-UL and Rt.-UL) groups, left-sided and right-sided UL with bipolar GVS with the cathode on the lesion side (Lt.-GVS and Rt.-GVS) groups, and a control group with sham surgery. We assessed the locomotor and cognitive-behavioral functions using the open field (OF), Y maze, and Morris water maze (MWM) tests before (baseline) and 3, 7, and 14 days after surgical UL in each group. On postoperative day (POD) 3, locomotion and spatial working memory were more impaired in the Lt.-UL group compared with the Rt.-UL group (p < 0.01, Tamhane test). On POD 7, there was a substantial difference between the groups; the locomotion and spatial navigation of the Lt.-UL group recovered significantly more slowly compared with those of the Rt.-UL group. Although the differences in the short-term spatial cognition and motor coordination were resolved by POD 14, the long-term spatial navigation deficits assessed by the MWM were significantly worse in the Lt.-UL group compared with the Rt.-UL group. GVS intervention accelerated the vestibular compensation in both the Lt.-GVS and Rt.-GVS groups in terms of improvement of locomotion and spatial cognition. The current data imply that right- and left-sided UVD impair spatial cognition and locomotion differently and result in different compensatory patterns. Sequential bipolar GVS when the cathode (stimulating) was assigned to the lesion side accelerated recovery for UVD-induced spatial cognition, which may have implications for managing the patients with spatial cognitive impairment, especially that induced by unilateral peripheral vestibular damage on the dominant side.


2021 ◽  
Vol 17 (S6) ◽  
Author(s):  
Jan Laczó ◽  
Katerina Cechova ◽  
Martina Parizkova ◽  
Ondrej Lerch ◽  
Vaclav Matoska ◽  
...  

2021 ◽  
Author(s):  
L. Fialho ◽  
J. Oliveira ◽  
A. Filipe ◽  
F. Luz

2021 ◽  
pp. 195-198
Author(s):  
Steven Brown

In a neuroimaging study of tango dancers, the authors attempted to address two fundamental issues about dance: movement patterning (i.e., navigation of the legs in space) and synchronization of movement to the beat of music. The results of the study revealed the importance of the posterior parietal cortex to spatial navigation of movement and the cerebellum to synchronization to the beat. In a later two-person study of leading and following in dance, the author found that leaders accentuate motor processes, while followers accentuate sensory processes in their partnership. Dance is an interesting marriage of movement patterning, timing, and joint action.


Sign in / Sign up

Export Citation Format

Share Document