spiking neuron
Recently Published Documents


TOTAL DOCUMENTS

415
(FIVE YEARS 98)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Anguo Zhang ◽  
Ying Han ◽  
Jing Hu ◽  
Yuzhen Niu ◽  
Yueming Gao ◽  
...  

We propose two simple and effective spiking neuron models to improve the response time of the conventional spiking neural network. The proposed neuron models adaptively tune the presynaptic input current depending on the input received from its presynapses and subsequent neuron firing events. We analyze and derive the firing activity homeostatic convergence of the proposed models. We experimentally verify and compare the models on MNIST handwritten digits and FashionMNIST classification tasks. We show that the proposed neuron models significantly increase the response speed to the input signal.


2021 ◽  
Author(s):  
Jinlong Xiang ◽  
Yujia Zhang ◽  
yaotian zhao ◽  
Xuhan Guo ◽  
Yikai Su

2021 ◽  
Author(s):  
Giuseppe de Alteriis ◽  
Enrico Cataldo ◽  
Alberto Mazzoni ◽  
Calogero Maria Oddo

The Izhikevich artificial spiking neuron model is among the most employed models in neuromorphic engineering and computational neuroscience, due to the affordable computational effort to discretize it and its biological plausibility. It has been adopted also for applications with limited computational resources in embedded systems. It is important therefore to realize a compromise between error and computational expense to solve numerically the model's equations. Here we investigate the effects of discretization and we study the solver that realizes the best compromise between accuracy and computational cost, given an available amount of Floating Point Operations per Second (FLOPS). We considered three frequently used fixed step Ordinary Differential Equations (ODE) solvers in computational neuroscience: Euler method, the Runge-Kutta 2 method and the Runge-Kutta 4 method. To quantify the error produced by the solvers, we used the Victor Purpura spike train Distance from an ideal solution of the ODE. Counterintuitively, we found that simple methods such as Euler and Runge Kutta 2 can outperform more complex ones (i.e. Runge Kutta 4) in the numerical solution of the Izhikevich model if the same FLOPS are allocated in the comparison. Moreover, we quantified the neuron rest time (with input under threshold resulting in no output spikes) necessary for the numerical solution to converge to the ideal solution and therefore to cancel the error accumulated during the spike train; in this analysis we found that the required rest time is independent from the firing rate and the spike train duration. Our results can generalize in a straightforward manner to other spiking neuron models and provide a systematic analysis of fixed step neural ODE solvers towards a trade-off between accuracy in the discretization and computational cost.


2021 ◽  
Vol 1 (4) ◽  
pp. 488-500
Author(s):  
Carlos Antonio Márquez-Vera ◽  
Zaineb Yakoub ◽  
Marco Antonio Márquez Vera ◽  
Alfian Ma'arif

Artificial neural networks (ANN) can approximate signals and give interesting results in pattern recognition; some works use neural networks for control applications. However, biological neurons do not generate similar signals to the obtained by ANN.  The spiking neurons are an interesting topic since they simulate the real behavior depicted by biological neurons. This paper employed a spiking neuron to compute a PID control, which is further applied to the Van de Vusse reaction. This reaction, as the inverse pendulum, is a benchmark used to work with systems that has inverse response producing the output to undershoot. One problem is how to code information that the neuron can interpret and decode the peak generated by the neuron to interpret the neuron's behavior. In this work, a spiking neuron is used to compute a PID control by coding in time the peaks generated by the neuron. The neuron has as synaptic weights the PID gains, and the peak observed in the axon is the coded control signal. The neuron adaptation tries to obtain the necessary weights to generate the peak instant necessary to control the chemical reaction. The simulation results show the possibility of using this kind of neuron for control issues and the possibility of using a spiking neural network to overcome the undershoot obtained due to the inverse response of the chemical reaction.


2021 ◽  
pp. 187-194
Author(s):  
Anton Korsakov ◽  
Aleksandr Bakhshiev ◽  
Lyubov Astapova ◽  
Lev Stankevich

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Leonardo Dalla Porta ◽  
Daniel M. Castro ◽  
Mauro Copelli ◽  
Pedro V. Carelli ◽  
Fernanda S. Matias

2021 ◽  
Author(s):  
Wenwu Jiang ◽  
Jie Li ◽  
Hongbo Liu ◽  
Xicong Qian ◽  
Yuan Ge ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaoyan Fang ◽  
Shukai Duan ◽  
Lidan Wang

The Hodgkin-Huxley (HH) spiking neuron model reproduces the dynamic characteristics of the neuron by mimicking the action potential, ionic channels, and spiking behaviors. The memristor is a nonlinear device with variable resistance. In this paper, the memristor is introduced to the HH spiking model, and the memristive Hodgkin-Huxley spiking neuron model (MHH) is presented. We experimentally compare the HH spiking model and the MHH spiking model by applying different stimuli. First, the individual current pulse is injected into the HH and MHH spiking models. The comparison between action potentials, current densities, and conductances is carried out. Second, the reverse single pulse stimulus and a series of pulse stimuli are applied to the two models. The effects of current density and action time on the production of the action potential are analyzed. Finally, the sinusoidal current stimulus acts on the two models. The various spiking behaviors are realized by adjusting the frequency of the sinusoidal stimulus. We experimentally demonstrate that the MHH spiking model generates more action potential than the HH spiking model and takes a short time to change the memductance. The reverse stimulus cannot activate the action potential in both models. The MHH spiking model performs smoother waveforms and a faster speed to return to the resting potential. The larger the external stimulus, the faster action potential generated, and the more noticeable change in conductances. Meanwhile, the MHH spiking model shows the various spiking patterns of neurons.


2021 ◽  
Author(s):  
Yuntao Han ◽  
Tao Yu ◽  
Silu Cheng ◽  
Jiangtao Xu

<div> <div> <div> <div> <p>Spiking Neuron Network (SNN) has shown advantages in processing event-based data for image classification. However, the classification accuracy of SNNs decreases in noisy environment. The cascade spiking neuron network (cascade-SNN) was proposed to solve this problem in this letter. We used spiking convolutional spiking neuron network (SCNN) for features extraction and liquid state machine (LSM) for read out. Compared with early works on ANNs, this network achieved the state-of-the-art classification accuracy in DVS-CIFAR10 dataset and DVS-Gesture dataset, which are both challenging dataset because of noisy environment. We conducted ablation experiments to verify the proposed structure is effective and analyzed the influence of different hyper-parameters. </p> </div> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document