scholarly journals Mechanisms creating transient and sustained photoresponses in mammalian retinal ganglion cells

2017 ◽  
Vol 149 (3) ◽  
pp. 335-353 ◽  
Author(s):  
Xiwu Zhao ◽  
Aaron N. Reifler ◽  
Melanie M. Schroeder ◽  
Elizabeth R. Jaeckel ◽  
Andrew P. Chervenak ◽  
...  

Retinal neurons use sustained and transient light responses to encode visual stimuli of different frequency ranges, but the underlying mechanisms remain poorly understood. In particular, although earlier studies in retinal ganglion cells (RGCs) proposed seven potential mechanisms, all seven have since been disputed, and it remains unknown whether different RGC types use different mechanisms or how many mechanisms are used by each type. Here, we conduct a comprehensive survey in mice and rats of 12 candidate mechanisms that could conceivably produce tonic rod/cone-driven ON responses in intrinsically photosensitive RGCs (ipRGCs) and transient ON responses in three types of direction-selective RGCs (TRHR+, Hoxd10+ ON, and Hoxd10+ ON-OFF cells). We find that the tonic kinetics of ipRGCs arises from their substantially above-threshold resting potentials, input from sustained ON bipolar cells, absence of amacrine cell inhibition of presynaptic ON bipolar cells, and mGluR7-mediated maintenance of light-evoked glutamatergic input. All three types of direction-selective RGCs receive input from transient ON bipolar cells, and each type uses additional strategies to promote photoresponse transience: presynaptic inhibition and dopaminergic modulation for TRHR+ cells, center/surround antagonism and relatively negative resting potentials for Hoxd10+ ON cells, and presynaptic inhibition for Hoxd10+ ON-OFF cells. We find that the sustained nature of ipRGCs’ rod/cone-driven responses depends neither on melanopsin nor on N-methyl-d-aspartate (NMDA) receptors, whereas the transience of the direction-selective cells’ responses is influenced neither by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor desensitization nor by glutamate uptake. For all cells, we further rule out spike frequency adaptation and intracellular Ca2+ as determinants of photoresponse kinetics. In conclusion, different RGC types use diverse mechanisms to produce sustained or transient light responses. Parenthetically, we find evidence in both mice and rats that the kinetics of light-induced mGluR6 deactivation determines whether an ON bipolar cell responds tonically or transiently to light.

2003 ◽  
Vol 89 (5) ◽  
pp. 2449-2458 ◽  
Author(s):  
Colleen R. Shields ◽  
Peter D. Lukasiewicz

The inhibitory surround signal in retinal ganglion cells is usually attributed to lateral horizontal cell signaling in the outer plexiform layer (OPL). However, recent evidence suggests that lateral inhibition at the inner plexiform layer (IPL) also contributes to the ganglion cell receptive field surround. Although amacrine cell input to ganglion cells mediates a component of this lateral inhibition, it is not known if presynaptic inhibition to bipolar cell terminals also contributes to surround signaling. We investigated the role of presynaptic inhibition by recording from bipolar cells in the salamander retinal slice. TTX reduced light-evoked GABAergic inhibitory postsynaptic currents (IPSCs) in bipolar cells, indicating that presynaptic pathways mediate lateral inhibition in the IPL. Photoreceptor and bipolar cell synaptic transmission were unaffected by TTX, indicating that its main effect was in the IPL. To rule out indirect actions of TTX, we bypassed lateral signaling in the outer retina by either electrically stimulating bipolar cells or by puffing kainate (KA) directly onto amacrine cell processes lateral to the recorded cell. In bipolar and ganglion cells, TTX suppressed laterally evoked IPSCs, demonstrating that both pre- and postsynaptic lateral signaling in the IPL depended on action potentials. By contrast, locally evoked IPSCs in both cell types were only weakly suppressed by TTX, indicating that local inhibition was not as dependent on action potentials. Our results show a TTX-sensitive lateral inhibitory input to bipolar cell terminals, which acts in concert with direct lateral inhibition to give rise to the GABAergic surround in ganglion cells.


2003 ◽  
Vol 17 (9) ◽  
pp. 1727-1735 ◽  
Author(s):  
Erin J. Warren ◽  
Charles N. Allen ◽  
R. Lane Brown ◽  
David W. Robinson

2020 ◽  
Author(s):  
Shahad Albadri ◽  
Olivier Armant ◽  
Tairi Aljand-Geschwill ◽  
Filippo Del Bene ◽  
Matthias Carl ◽  
...  

AbstractPromoting the regeneration or survival of retinal ganglion cells (RGCs) is one focus of regenerative medicine. Homeobox Barhl transcription factors might be instrumental in these processes. In mammals, only barhl2 is expressed in the retina and is required for both subtype identity acquisition of amacrine cells and for the survival of RGCs downstream of Atoh7, a transcription factor necessary for RGC genesis. The underlying mechanisms of this dual role of Barhl2 in mammals have remained elusive. Whole genome duplication in the teleost lineage generated the barhl1a and barhl2 paralogues. In the Zebrafish retina, Barhl2 functions as determinant of subsets of amacrine cells lineally related to RGCs independently of Atoh7. In contrast, barhl1a expression depends on Atoh7 but its expression dynamics and function have not been studied. Here we describe for the first time a Barhl1a:GFP reporter line in vivo showing that Barhl1a turns on exclusively in subsets of RGCs and their post-mitotic precursors. We also show transient expression of Barhl1a:GFP in diencephalic neurons extending their axonal projections as part of the post-optic commissure, at the time of optic chiasm formation. This work sets the ground for future studies on RGC subtype identity, axonal projections and genetic specification of Barhl1a-positive RGCs and commissural neurons.


2020 ◽  
Vol 6 (37) ◽  
pp. eabb6642
Author(s):  
Paul Werginz ◽  
Vineeth Raghuram ◽  
Shelley I. Fried

Recently, mouse OFF-α transient (OFF-α T) retinal ganglion cells (RGCs) were shown to display a gradient of light responses as a function of position along the dorsal-ventral axis; response differences were correlated to differences in the level of excitatory presynaptic input. Here, we show that postsynaptic differences between cells also make a strong contribution to response differences. Cells in the dorsal retina had longer axon initial segments (AISs)—the greater number of Nav1.6 channels in longer AISs directly mediates higher rates of spiking and helps avoid depolarization block that terminates spiking in ventral cells with shorter AISs. The pre- and postsynaptic specializations that shape the output of OFF-α T RGCs interact in different ways: In dorsal cells, strong inputs and the long AISs are both necessary to generate their strong, sustained spiking outputs, while in ventral cells, weak inputs or the short AISs are both sufficient to limit the spiking signal.


2009 ◽  
Vol 102 (6) ◽  
pp. 3260-3269 ◽  
Author(s):  
Chris Sekirnjak ◽  
Clare Hulse ◽  
Lauren H. Jepson ◽  
Pawel Hottowy ◽  
Alexander Sher ◽  
...  

Retinal implants are intended to help patients with degenerative conditions by electrically stimulating surviving cells to produce artificial vision. However, little is known about how individual retinal ganglion cells respond to direct electrical stimulation in degenerating retina. Here we used a transgenic rat model to characterize ganglion cell responses to light and electrical stimulation during photoreceptor degeneration. Retinas from pigmented P23H-1 rats were compared with wild-type retinas between ages P37 and P752. During degeneration, retinal thickness declined by 50%, largely as a consequence of photoreceptor loss. Spontaneous electrical activity in retinal ganglion cells initially increased two- to threefold, but returned to nearly normal levels around P600. A profound decrease in the number of light-responsive ganglion cells was observed during degeneration, culminating in retinas without detectable light responses by P550. Ganglion cells from transgenic and wild-type animals were targeted for focal electrical stimulation using multielectrode arrays with electrode diameters of ∼10 microns. Ganglion cells were stimulated directly and the success rate of stimulation in both groups was 60–70% at all ages. Surprisingly, thresholds (∼0.05 mC/cm2) and latencies (∼0.25 ms) in P23H rat ganglion cells were comparable to those in wild-type ganglion cells at all ages and showed no change over time. Thus ganglion cells in P23H rats respond normally to direct electrical stimulation despite severe photoreceptor degeneration and complete loss of light responses. These findings suggest that high-resolution epiretinal prosthetic devices may be effective in treating vision loss resulting from photoreceptor degeneration.


2018 ◽  
Author(s):  
Shai Sabbah ◽  
Carin Papendorp ◽  
Elizabeth Koplas ◽  
Marjo Beltoja ◽  
Cameron Etebari ◽  
...  

SummaryWe have explored the synaptic networks responsible for the unique capacity of intrinsically photosensitive retinal ganglion cells (ipRGCs) to encode overall light intensity. This luminance signal is crucial for circadian, pupillary and related reflexive responses light. By combined glutamate-sensor imaging and patch recording of postsynaptic RGCs, we show that the capacity for intensity-encoding is widespread among cone bipolar types, including OFF types.Nonetheless, the bipolar cells that drive ipRGCs appear to carry the strongest luminance signal. By serial electron microscopic reconstruction, we show that Type 6 ON cone bipolar cells are the dominant source of such input, with more modest input from Types 7, 8 and 9 and virtually none from Types 5i, 5o, 5t or rod bipolar cells. In conventional RGCs, the excitatory drive from bipolar cells is high-pass temporally filtered more than it is in ipRGCs. Amacrine-to-bipolar cell feedback seems to contribute surprisingly little to this filtering, implicating mostly postsynaptic mechanisms. Most ipRGCs sample from all bipolar terminals costratifying with their dendrites, but M1 cells avoid all OFF bipolar input and accept only ectopic ribbon synapses from ON cone bipolar axonal shafts. These are remarkable monad synapses, equipped with as many as a dozen ribbons and only one postsynaptic process.


Sign in / Sign up

Export Citation Format

Share Document