dorsal cells
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 11)

H-INDEX

27
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Xiaolin Huang ◽  
Alan Jaehyun Kim ◽  
Hector Acaron Ledesma ◽  
Jennifer Ding ◽  
Robert G Smith ◽  
...  

Experience-dependent modulation of neuronal responses is a key attribute in sensory processing. In the mammalian retina, the On-Off direction-selective ganglion cell (On-Off DSGC) is well known for its robust direction selectivity. However, how the On-Off DSGC light responsiveness dynamically adjusts to the changing visual environment is underexplored. Here, we report that the On-Off DSGC can be transiently sensitized by prior stimuli. Notably, distinct sensitization patterns are found in dorsal and ventral DSGCs that receive visual inputs from lower and upper visual fields respectively. Although responses of both dorsal and ventral DSGCs to dark stimuli (Off responses) are sensitized, only dorsal cells show sensitization of responses to bright stimuli (On responses). Visual stimulation to the dorsal retina potentiates a sustained excitatory input from Off bipolar cells, leading to tonic depolarization of dorsal DSGCs. Such tonic depolarization propagates from the Off to the On dendritic arbor of the DSGC to sensitize its On response. We also identified a previously overlooked feature of DSGC dendritic architecture that can support direct electrotonic propagation between On and Off dendritic layers. By contrast, ventral DSGCs lack a sensitized tonic depolarization and thus do not exhibit sensitization of their On responses. Our results highlight a topographic difference in Off bipolar cell inputs underlying divergent sensitization patterns of dorsal and ventral On-Off DSGCs. Moreover, substantial crossovers between dendritic layers of On-Off DSGCs suggest an interactive dendritic algorithm for processing On and Off signals before they reach the soma.


Biology Open ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. bio051797 ◽  
Author(s):  
Aitana M. Castro Colabianchi ◽  
María B. Tavella ◽  
Laura E. Boyadjián López ◽  
Marcelo Rubinstein ◽  
Lucía F. Franchini ◽  
...  

ABSTRACTThe blastula Chordin- and Noggin-expressing (BCNE) center comprises animal-dorsal and marginal-dorsal cells of the amphibian blastula and contains the precursors of the brain and the gastrula organizer. Previous findings suggested that the BCNE behaves as a homogeneous cell population that only depends on nuclear β-catenin activity but does not require Nodal and later segregates into its descendants during gastrulation. In contrast to previous findings, in this work, we show that the BCNE does not behave as a homogeneous cell population in response to Nodal antagonists. In fact, we found that chordin.1 expression in a marginal subpopulation of notochordal precursors indeed requires Nodal input. We also establish that an animal BCNE subpopulation of cells that express both, chordin.1 and sox2 (a marker of pluripotent neuroectodermal cells), and gives rise to most of the brain, persisted at blastula stage after blocking Nodal. Therefore, Nodal signaling is required to define a population of chordin.1+ cells and to restrict the recruitment of brain precursors within the BCNE as early as at blastula stage. We discuss our findings in Xenopus in comparison to other vertebrate models, uncovering similitudes in early brain induction and delimitation through Nodal signaling.This article has an associated First Person interview with the first author of the paper.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ashley Rich ◽  
Richard G Fehon ◽  
Michael Glotzer

Ventral furrow formation, the first step in Drosophila gastrulation, is a well-studied example of tissue morphogenesis. Rho1 is highly active in a subset of ventral cells and is required for this morphogenetic event. However, it is unclear whether spatially patterned Rho1 activity alone is sufficient to recapitulate all aspects of this morphogenetic event, including anisotropic apical constriction and coordinated cell movements. Here, using an optogenetic probe that rapidly and robustly activates Rho1 in Drosophila tissues, we show that Rho1 activity induces ectopic deformations in the dorsal and ventral epithelia of Drosophila embryos. These perturbations reveal substantial differences in how ventral and dorsal cells, both within and outside the zone of Rho1 activation, respond to spatially and temporally identical patterns of Rho1 activation. Our results demonstrate that an asymmetric zone of Rho1 activity is not sufficient to recapitulate ventral furrow formation and reveal that additional, ventral-specific factors contribute to the cell- and tissue-level behaviors that emerge during ventral furrow formation.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Athene Knüfer ◽  
Giovanni Diana ◽  
Gregory S Walsh ◽  
Jonathan DW Clarke ◽  
Sarah Guthrie

In the vertebrate central nervous system, groups of functionally related neurons, including cranial motor neurons of the brainstem, are frequently organised as nuclei. The molecular mechanisms governing the emergence of nuclear topography and circuit function are poorly understood. Here we investigate the role of cadherin-mediated adhesion in the development of zebrafish ocular motor (sub)nuclei. We find that developing ocular motor (sub)nuclei differentially express classical cadherins. Perturbing cadherin function in these neurons results in distinct defects in neuronal positioning, including scattering of dorsal cells and defective contralateral migration of ventral subnuclei. In addition, we show that cadherin-mediated interactions between adjacent subnuclei are critical for subnucleus position. We also find that disrupting cadherin adhesivity in dorsal oculomotor neurons impairs the larval optokinetic reflex, suggesting that neuronal clustering is important for co-ordinating circuit function. Our findings reveal that cadherins regulate distinct aspects of cranial motor neuron positioning and establish subnuclear topography and motor function.


2020 ◽  
Vol 6 (37) ◽  
pp. eabb6642
Author(s):  
Paul Werginz ◽  
Vineeth Raghuram ◽  
Shelley I. Fried

Recently, mouse OFF-α transient (OFF-α T) retinal ganglion cells (RGCs) were shown to display a gradient of light responses as a function of position along the dorsal-ventral axis; response differences were correlated to differences in the level of excitatory presynaptic input. Here, we show that postsynaptic differences between cells also make a strong contribution to response differences. Cells in the dorsal retina had longer axon initial segments (AISs)—the greater number of Nav1.6 channels in longer AISs directly mediates higher rates of spiking and helps avoid depolarization block that terminates spiking in ventral cells with shorter AISs. The pre- and postsynaptic specializations that shape the output of OFF-α T RGCs interact in different ways: In dorsal cells, strong inputs and the long AISs are both necessary to generate their strong, sustained spiking outputs, while in ventral cells, weak inputs or the short AISs are both sufficient to limit the spiking signal.


2020 ◽  
Author(s):  
Aitana M. Castro Colabianchi ◽  
María B. Tavella ◽  
Laura E. Boyadjián López ◽  
Marcelo Rubinstein ◽  
Lucía F. Franchini ◽  
...  

ABSTRACTThe Blastula Chordin- and Noggin Expressing Center (BCNE) comprises animal-dorsal and marginal-dorsal cells of the amphibian blastula and contains the precursors of the brain and of the gastrula organizer. Previous findings suggested that the BCNE behaves as a homogeneous cell population that depends only on nuclear β-catenin activity but does not require Nodal and segregates into its descendants later, during gastrulation. In this work, we analyzed if the BCNE is already compartmentalized at the blastula stage. In contrast to previous findings, we show that the BCNE does not behave as a homogeneous cell population in response to Nodal antagonists. In fact, we found that the chordin.1 expression in a marginal subpopulation of notochordal precursors indeed requires Nodal input. We also establish that an animal BCNE subpopulation of cells that express both, chordin.1 and sox2 (a marker of pluripotent neuroectodermal cells), and gives rise to most of the brain, persisted at blastula stage after blocking Nodal. Moreover, RT-qPCR analysis showed that chordin.1 and sox2 expression increased at blastula stage after blocking Nodal. Therefore, Nodal signaling is required to define a population of chordin.1+ cells and to restrict the recruitment of brain precursors within the BCNE as early as at blastula stage.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Iryna Kozmikova ◽  
Zbynek Kozmik

Deciphering the mechanisms of axis formation in amphioxus is a key step to understanding the evolution of chordate body plan. The current view is that Nodal signaling is the only factor promoting the dorsal axis specification in the amphioxus, whereas Wnt/β-catenin signaling plays no role in this process. Here, we re-examined the role of Wnt/βcatenin signaling in the dorsal/ventral patterning of amphioxus embryo. We demonstrated that the spatial activity of Wnt/β-catenin signaling is located in presumptive dorsal cells from cleavage to gastrula stage, and provided functional evidence that Wnt/β-catenin signaling is necessary for the specification of dorsal cell fate in a stage-dependent manner. Microinjection of Wnt8 and Wnt11 mRNA induced ectopic dorsal axis in neurulae and larvae. Finally, we demonstrated that Nodal and Wnt/β-catenin signaling cooperate to promote the dorsal-specific gene expression in amphioxus gastrula. Our study reveals high evolutionary conservation of dorsal organizer formation in the chordate lineage.


2020 ◽  
Author(s):  
Athene Knüfer ◽  
Giovanni Diana ◽  
Gregory S. Walsh ◽  
Jonathan Clarke ◽  
Sarah Guthrie

AbstractIn the vertebrate central nervous system, groups of functionally-related neurons, including cranial motor neurons of the brainstem, are frequently organised as nuclei. The molecular mechanisms governing the emergence of nuclear topography and circuit function are poorly understood. Here we investigate the role of cadherin-mediated adhesion in the development of zebrafish ocular motor (sub)nuclei. We find that developing ocular motor (sub)nuclei differentially express classical cadherins. Perturbing cadherin function in these neurons results in distinct defects in neuronal positioning, including scattering of dorsal cells and defective contralateral migration of ventral subnuclei. In addition, we show that cadherin-mediated interactions between adjacent subnuclei are critical for subnucleus position. We also find that disrupting cadherin adhesivity in dorsal oculomotor neurons impairs the larval optokinetic reflex, suggesting that neuronal clustering is important for co-ordinating circuit function. Our findings reveal that cadherins regulate distinct aspects of cranial motor neuron positioning and establish subnuclear topography and motor function.


2020 ◽  
Author(s):  
Ashley Rich ◽  
Richard G. Fehon ◽  
Michael Glotzer

AbstractVentral furrow formation, the first step in Drosophila gastrulation, is a well-studied example of tissue morphogenesis. Rho1 is highly active in a subset of ventral cells and is required for this morphogenetic event. However, it is unclear whether spatially patterned Rho1 activity alone is sufficient to recapitulate all aspects of this morphogenetic event, including anisotropic apical constriction and coordinated cell movements. Here, using an optogenetic probe that rapidly and robustly activates Rho1 in Drosophila tissues, we show that Rho1 activity induces ectopic deformations in the dorsal and ventral epithelia of Drosophila embryos. These perturbations reveal substantial differences in how ventral and dorsal cells, both within and outside the zone of Rho1 activation, respond to spatially and temporally identical patterns of Rho1 activation. Our results demonstrate that an asymmetric zone of Rho1 activity is not sufficient to recapitulate ventral furrow formation and indicate that additional, ventral-specific factors contribute to the cell- and tissue-level behaviors that emerge during ventral furrow formation.


Sign in / Sign up

Export Citation Format

Share Document