scholarly journals Synaptic inputs to the ganglion cells in the tiger salamander retina.

1979 ◽  
Vol 73 (3) ◽  
pp. 265-286 ◽  
Author(s):  
D F Wunk ◽  
F S Werblin

The postsynaptic potentials (PSPs) that form the ganglion cell light response were isolated by polarizing the cell membrane with extrinsic currents while stimulating at either the center or surround of the cell's receptive field. The time-course and receptive field properties of the PSPs were correlated with those of the bipolar and amacrine cells. The tiger salamander retina contains four main types of ganglion cell: "on" center, "off" center, "on-off", and a "hybrid" cell that responds transiently to center, but sustainedly, to surround illumination. The results lead to these inferences. The on-ganglion cell receives excitatory synpatic input from the on bipolars and that synapse is "silent" in the dark. The off-ganglion cell receives excitatory synaptic input from the off bipolars with this synapse tonically active in the dark. The on-off and hybrid ganglion cells receive a transient excitatory input with narrow receptive field, not simply correlated with the activity of any presynaptic cell. All cell types receive a broad field transient inhibitory input, which apparently originates in the transient amacrine cells. Thus, most, but not all, ganglion cell responses can be explained in terms of synaptic inputs from bipolar and amacrine cells, integrated at the ganglion cell membrane.

1976 ◽  
Vol 67 (6) ◽  
pp. 679-690 ◽  
Author(s):  
R F Miller ◽  
R F Dacheux

A chloride-free environment produces selective changes in the retinal network which include a separation of on and off channels. The identification of chloride-sensitive and insensitivie neuronal activity permits identification of some of the connections and intervening polarities of synaptic interactions which are expressed in ganglion cell receptive field organization. These experiments support previous suggestions that surround antagonism is dependent on horizontal cell activity. In addition they suggest a model of the neuronal connections which subserve on-center, off-center, and on-off ganglion cells. Experimental tests of the on-off ganglion cell model favor the idea that this type of ganglion cell receives inhibitory input from amacrine cells and excitatory activation from depolarizing and hyperpolarizing bipolar cells.


2007 ◽  
Vol 97 (6) ◽  
pp. 4327-4340 ◽  
Author(s):  
Kareem A. Zaghloul ◽  
Michael B. Manookin ◽  
Bart G. Borghuis ◽  
Kwabena Boahen ◽  
Jonathan B. Demb

A retinal ganglion cell receptive field is made up of an excitatory center and an inhibitory surround. The surround has two components: one driven by horizontal cells at the first synaptic layer and one driven by amacrine cells at the second synaptic layer. Here we characterized how amacrine cells inhibit the center response of on- and off-center Y-type ganglion cells in the in vitro guinea pig retina. A high spatial frequency grating (4–5 cyc/mm), beyond the spatial resolution of horizontal cells, drifted in the ganglion cell receptive field periphery to stimulate amacrine cells. The peripheral grating suppressed the ganglion cell spiking response to a central spot. Suppression of spiking was strongest and observed most consistently in off cells. In intracellular recordings, the grating suppressed the subthreshold membrane potential in two ways: a reduced slope (gain) of the stimulus-response curve by ∼20–30% and, in off cells, a tonic ∼1-mV hyperpolarization. In voltage clamp, the grating increased an inhibitory conductance in all cells and simultaneously decreased an excitatory conductance in off cells. To determine whether center response inhibition was presynaptic or postsynaptic (shunting), we measured center response gain under voltage-clamp and current-clamp conditions. Under both conditions, the peripheral grating reduced center response gain similarly. This result suggests that reduced gain in the ganglion cell subthreshold center response reflects inhibition of presynaptic bipolar terminals. Thus amacrine cells suppressed ganglion cell center response gain primarily by inhibiting bipolar cell glutamate release.


2019 ◽  
Vol 36 ◽  
Author(s):  
Andrea S. Bordt ◽  
Diego Perez ◽  
Luke Tseng ◽  
Weiley Sunny Liu ◽  
Jay Neitz ◽  
...  

AbstractThere are more than 30 distinct types of mammalian retinal ganglion cells, each sensitive to different features of the visual environment. In rabbit retina, they can be grouped into four classes according to their morphology and stratification of their dendrites in the inner plexiform layer (IPL). The goal of this study was to describe the synaptic inputs to one type of Class IV ganglion cell, the third member of the sparsely branched Class IV cells (SB3). One cell of this type was partially reconstructed in a retinal connectome developed using automated transmission electron microscopy (ATEM). It had slender, relatively straight dendrites that ramify in the sublamina a of the IPL. The dendrites of the SB3 cell were always postsynaptic in the IPL, supporting its identity as a ganglion cell. It received 29% of its input from bipolar cells, a value in the middle of the range for rabbit retinal ganglion cells studied previously. The SB3 cell typically received only one synapse per bipolar cell from multiple types of presumed OFF bipolar cells; reciprocal synapses from amacrine cells at the dyad synapses were infrequent. In a few instances, the bipolar cells presynaptic to the SB3 ganglion cell also provided input to an amacrine cell presynaptic to the ganglion cell. There was apparently no crossover inhibition from narrow-field ON amacrine cells. Most of the amacrine cell inputs were from axons and dendrites of GABAergic amacrine cells, likely providing inhibitory input from outside the classical receptive field.


1976 ◽  
Vol 67 (6) ◽  
pp. 661-678 ◽  
Author(s):  
R F Miller ◽  
R F Dacheux

Extracellular ganglion cell recordings in the perfused mudpuppy eyecup show that a chloride-free (c-f) perfusate abolishes the center and surround excitation of on-center cells, the surround excitation of off-center cells, and the on discharge of on-off cells. These changes in ganglion cell receptive field organization are anticipated in view of the effects of a c-f environment on the neurons which are presynaptic to the ganglion cells. However, chloride-dependent inhibitory postsynaptic (IPS) responses have been observed in on-off ganglion cells. These inhibitory postsynaptic potentials (IPSP's) are preceeded by (ESPS's) exitatory postsynaptic potentials and are apparently mediated by amacrine cells. The light-activated hyperpolarization of off cells is not the result of a chloride-dependent IPSP and probably results from disfacilitation.


1977 ◽  
Vol 40 (1) ◽  
pp. 26-43 ◽  
Author(s):  
K. Naka

1. The basic organization of the biphasic (or concentric) receptive field is established in the bipolar cells as the result of an interaction between two signals, one local representing the activity of a small number of receptors, and the other integrating (19, 20) or global (28) coming from the S space or a lamina formed by the horizontal cells (8, 14, 22, 29). 2. Bipolar-ganglion cell pairs are segregated into two types; A (on center) and B (off center) pairs. A depolarization of a bipolar cell produces spike discharges from ganglion cells of the same type and a hyperpolarization depresses their discharges. I haven't detected any cross talk between the types A and B pairs. Bipolar and ganglion cells must be interfaced by the classical chemical synapses, the only such kind in the catfish retina. 3. Horizontal and type N neurons form two lateral transmission systems, one distal and the other proximal (19, 20). Signals in the lateral systems are shared by the two receptive-field types and are not excitatory or inhibitory in themselves; it is incumbent upon the postsynaptic neurons to decide the polarity of the synaptic transmission. The horizontal cell participates directly in the formation of biphasic receptive fields of bipolar cells by providing their surrounding, whereas type N neuron seems to modify the receptive-field organization established in the bipolar cells. 4. Type N neurons are amacrine cells because they do not produce spike discharges (2, 18, 21) and because they influence the activity of both A and B receptive fields. 5. The function of the type C neuron is as unique as its structure (21) and is not fully clear as yet. It is not a conventional amacrine cell as the type N appears to be, nor is it a classical ganglion cell which forms either a type A or B receptive field (2). 6. Type Y neurons are a class of ganglion cells which forms either a type A or B receptive field.


1996 ◽  
Vol 13 (2) ◽  
pp. 303-309 ◽  
Author(s):  
Franklin R. Amthor ◽  
Norberto M. Grzywacz ◽  
David K. Merwine

AbstractThe excitatory receptive-field centers of On-Off directionally selective (DS) ganglioncells of the rabbit retina correspond closely to the lateral extent of their dendritic arborizations. Some investigators have hypothesized from this that theories for directionalselectivity that entail a lateral spread of excitation from outside the ganglion cell dendritic tree, such as from starburst amacrine cells, are therefore untenable. We show herethat significant motion facilitation is conducted from well outside the classical excitatory receptive-field center (and, therefore, dendritic arborization) of On-Off DS ganglioncells for preferred-direction, but not null-direction moving stimuli. These results are consistent with a role in directional selectivity for cells with processes lying beyond the On-Off ganglion cell's excitatory receptive-field center. These results also highlight the fundamental distinction in retinal ganglion cell receptive-field organization between classical excitatory mechanisms and those that facilitate other excitation without producing directly observable excitation by themselves.


1988 ◽  
Vol 60 (3) ◽  
pp. 1122-1142 ◽  
Author(s):  
M. S. Arkin ◽  
R. F. Miller

1. The synaptic inputs to sustained OFF-center ganglion cells of the mudpuppy retina were studied using a superfused retina-eye-cup preparation. Intra- and extracellular electrophysiological recording techniques were carried out during bath application of 2-amino-4-phosphonobutyrate (APB), a glutamate analog that selectively blocks the light responses of ON-bipolars but has minor effects on OFF-bipolar or horizontal cells. 2. The use of APB reduced ganglion cell inputs to those arising from the OFF-bipolar channel. In this way, the existence and polarity (depolarizing vs. hyperpolarizing) of direct or indirect bipolar connections to ganglion cells was determined. 3. Cobalt application was used to block synaptic transmission and demonstrate that APB does not have a direct excitatory action on ganglion cells. 4. Intracellular recording experiments included the use of pulsatile and sustained current injection to evaluate the input resistance changes associated with light, the action of APB, and the excitatory, inhibitory, or disafacilitory nature of the postsynaptic potentials. 5. Some intracellularly recorded cells were stained with horseradish peroxidase (HRP) to verify the ganglion cell origin of the recordings. 6. The OFF-ganglion cell population of the mudpuppy appears to be a heterogeneous group of cells. Sustained OFF-ganglion cells can receive dominant inputs through either the ON- or OFF-bipolar cell pathway or through a mixture of the two. 7. Based on the analysis of this study, we divided sustained OFF-ganglion cells into three subclasses. For one class, light causes the removal of a sustained excitatory input which originates from the OFF-bipolar channel (i.e., a light-evoked disfacilitation); a second class of cells is almost entirely driven by the ON-bipolar channel through a sustained light-evoked inhibitory input; and a third class receives both a light-evoked sustained disfacilitory input from the OFF-bipolar channel and a sustained inhibitory input through the ON-bipolar pathway. Thus the retina appears to use a variety of mechanisms that result in a common response to flashing light stimuli. 8. The results of this study show that APB can be a powerful tool for pharmacologically deciphering the functional connections that exist between outer and inner retinal neurons.


2002 ◽  
Vol 19 (3) ◽  
pp. 299-305 ◽  
Author(s):  
DAVID W. MARSHAK ◽  
ELIZABETH S. YAMADA ◽  
ANDREA S. BORDT ◽  
WENDY C. PERRYMAN

A labeled ON parasol ganglion cell from a macaque retina was analyzed in serial, ultrathin sections. It received 13% of its input from diffuse bipolar cells. These directed a large proportion of their output to amacrine cells but received a relatively small proportion of their amacrine cell input via feedback synapses. In these respects, they were similar to the DB3 bipolar cells that make synapses onto OFF parasol cells. Bipolar cell axons that contacted the ON parasol cell in stratum 4 of the inner plexiform layer always made synapses onto the dendrite, and therefore, the number of bipolar cell synapses onto these ganglion cells could be estimated reliably by light microscopy in the future. Amacrine cells provided the majority of inputs to the ON parasol cell. Only a few of the presynaptic amacrine cell processes received inputs from the same bipolar cells as the parasol cells, and most of the presynaptic amacrine cell processes did not receive any inputs at all within the series. These findings suggest that most of the inhibitory input to the ON parasol cell originates from other areas of the retina. Amacrine cells presynaptic to the parasol ganglion cell interacted very infrequently with other neurons in the circuit, and therefore, they would be expected to act independently, for the most part.


2001 ◽  
Vol 18 (1) ◽  
pp. 147-156 ◽  
Author(s):  
GAUTAM AWATRAMANI ◽  
JUE WANG ◽  
MALCOLM M. SLAUGHTER

The neuronal generators of the b- and d-waves of the electroretinogram (ERG) were investigated in the tiger salamander retina to determine if amacrine and ganglion cells contribute to this field potential. Several agents were used that affect third-order neurons, such as tetrodotoxin, baclofen, and NMDA agonists and antagonists. Baclofen, an agent that enhances light responses in third-order neurons, increased the d-wave and reduced the b-wave. In contrast, agents that decrease light responses in third-order neurons had the opposite effect of enhancing the b-wave and depressing the d-wave. The effect on the d-wave was particularly pronounced. The results indicate that third-order neuronal activity influences b- and d-waves of the ERG. The opposing actions suggest that the b-wave to d-wave ratio might serve as an measure of ganglion cell function.


1999 ◽  
Vol 16 (4) ◽  
pp. 653-665 ◽  
Author(s):  
DAIYAN XIN ◽  
STEWART A. BLOOMFIELD

We studied the light-evoked responses of AII amacrine cells in the rabbit retina under dark- and light-adapted conditions. In contrast to the results of previous studies, we found that AII cells display robust responses to light over a 6–7 log unit intensity range, well beyond the operating range of rod photoreceptors. Under dark adaptation, AII cells showed an ON-center/OFF-surround receptive-field organization. The intensity–response profile of the center-mediated response component followed a dual-limbed sigmoidal function indicating a transition from rod to cone mediation as stimulus intensities were increased. Following light adaptation, the receptive-field organization of AII cells changed dramatically. Light-adapted AII cells showed both ON- and OFF-responses to stimulation of the center receptive field, but we found no evidence for an antagonistic surround. Interestingly, the OFF-center response appeared first following rapid light adaptation and was then replaced gradually over a 1–4 min period by the emerging ON-center response component. Application of the metabotropic glutamate receptor agonist APB, the ionotropic glutamate blocker CNQX, 8-bromo-cGMP, and the nitric oxide donor SNAP all showed differential effects on the various center-mediated responses displayed by dark- and light-adapted AII cells. Taken together, these pharmacological results indicated that different synaptic circuits are responsible for the generation of the different AII cell responses. Specifically, the rod-driven ON-center responses are apparently derived from rod bipolar cell synaptic inputs, whereas the cone-driven ON-center responses arise from signals crossing the gap junctions between AII cells and ON-center cone bipolar cells. Additionally, the OFF-center response of light-adapted AII cells reflects direct synaptic inputs from OFF-center cone bipolar cells to AII dendritic processes in the distal inner plexiform layer.


Sign in / Sign up

Export Citation Format

Share Document