scholarly journals Potassium conductance of the squid giant axon. Single-channel studies.

1988 ◽  
Vol 92 (2) ◽  
pp. 179-196 ◽  
Author(s):  
I Llano ◽  
C K Webb ◽  
F Bezanilla

The patch-clamp technique was implemented in the cut-open squid giant axon and used to record single K channels. We present evidence for the existence of three distinct types of channel activities. In patches that contained three to eight channels, ensemble fluctuation analysis was performed to obtain an estimate of 17.4 pS for the single-channel conductance. Averaged currents obtained from these multichannel patches had a time course of activation similar to that of macroscopic K currents recorded from perfused squid giant axons. In patches where single events could be recorded, it was possible to find channels with conductances of 10, 20, and 40 pS. The channel most frequently encountered was the 20-pS channel; for a pulse to 50 mV, this channel had a probability of being open of 0.9. In other single-channel patches, a channel with a conductance of 40 pS was present. The activity of this channel varied from patch to patch. In some patches, it showed a very low probability of being open (0.16 for a pulse to 50 mV) and had a pronounced lag in its activation time course. In other patches, the 40-pS channel had a much higher probability of being open (0.75 at a holding potential of 50 mV). The 40-pS channel was found to be quite selective for K over Na. In some experiments, the cut-open axon was exposed to a solution containing no K for several minutes. A channel with a conductance of 10 pS was more frequently observed after this treatment. Our study shows that the macroscopic K conductance is a composite of several K channel types, but the relative contribution of each type is not yet clear. The time course of activation of the 20-pS channel and the ability to render it refractory to activation only by holding the membrane potential at a positive potential for several seconds makes it likely that it is the predominant channel contributing to the delayed rectifier conductance.

1996 ◽  
Vol 108 (3) ◽  
pp. 207-219 ◽  
Author(s):  
J J Rosenthal ◽  
R G Vickery ◽  
W F Gilly

We have cloned the cDNA for a squid Kvl potassium channel (SqKv1A). SqKv1A mRNA is selectively expressed in giant fiber lobe (GFL) neurons, the somata of the giant axons. Western blots detect two forms of SqKv1A in both GFL neuron and giant axon samples. Functional properties of SqKv1A currents expressed in Xenopus oocytes are very similar to macroscopic currents in GFL neurons and giant axons. Macroscopic K currents in GFL neuron cell bodies, giant axons, and in Xenopus oocytes expressing SqKv1A, activate rapidly and inactivate incompletely over a time course of several hundred ms. Oocytes injected with SqKv1A cRNA express channels of two conductance classes, estimated to be 13 and 20 pS in an internal solution containing 470 mM K. SqKv1A is thus a good candidate for the "20 pS" K channel that accounts for the majority of rapidly activating K conductance in both GFL neuron cell bodies and the giant axon.


1989 ◽  
Vol 145 (1) ◽  
pp. 173-184
Author(s):  
D. Yamamoto ◽  
N. Suzuki

Permeability and gating properties of single, non-inactivating, K+ channel currents in cultured Drosophila neurons were studied using the gigaohm-seal patch-clamp technique. The non-inactivating K+ currents were activated by depolarizing the membrane to −30 mV or to more positive potentials. The slope conductance of the channel was estimated to be 17.6 +/− 3.70 pS when the cytoplasmic side of the inside-out membrane patch was perfused with solutions containing 145 mmoll-1 K+. The single-channel conductance was temperature-sensitive, with a Q10 of 1.44 between 10 and 20 degrees C. Single-channel currents could be recorded when the cytoplasmic K+ was replaced with NH4+, Rb+ or Na+, but not with Cs+. The conductance ratio of the channel for these cations was: K+ (1) greater than NH4+(0.53) greater than Rb+ (0.47) greater than Na+ (0.44). Tetraethylammonium (TEA+) ions applied at a concentration of 10 mmoll-1 to the cytoplasmic side of the membrane increased the frequency of ‘blank’ traces which contained no channel openings during repetitive depolarization. In addition, single-channel amplitude was reduced by about 20%. The open-time distribution was fitted by a single exponential function, whereas the closed-time distribution required a three-exponential fit. Permeability and gating properties of single, non-inactivating K+ channel currents in neurons of eag, a mutant which has defects in the delayed rectifier K+ channel, were indistinguishable from those recorded from wild-type neurons.


1988 ◽  
Vol 232 (1269) ◽  
pp. 375-394 ◽  

A quantitative re-investigation of the time course of the initial rise of the potassium current in voltage-clamped squid giant axons is described. The n 4 law of the Hodgkin–Huxley equations was found to be well obeyed only for the smallest test pulses, and for larger ones a good fit of the inflected rise required use of the expression (1 – exp {– t / ז n 1 }) X –1 (1 – exp { – t / ז n 2 }), where both of the time constants and the power X varied with the size of the test pulse. Application of a negative prepulse produced a delay in the rise resulting mainly from an increase of X from a value of about 3 at –70 mV to 8 at –250 mV, while ז n 1 remained constant and ז n 2 was nearly doubled. The process responsible for generating this delay was switched on with a time constant of 8 ms at 4°C, which fell to about 1 ms at 15°C. Analysis of the inward tail currents at the end of a voltage-clamp pulse showed that there was a substantial external accumulation of potassium owing to the restriction of its diffusion out of the Schwann cell space, which, when duly allowed for, roughly doubled the calculated value of the potassium conductance. Computations suggested that the principal effect of such a build-up of [K] o would be to reduce the fitted values of ז n 1 and ז n 2 to two-thirds or even half their true sizes, while the power X would generally be little changed; but it would not affect the necessity to introduce a second time constant, nor would it invalidate our findings on the effect of negative prepulses.


1988 ◽  
Vol 91 (2) ◽  
pp. 255-274 ◽  
Author(s):  
C Marchetti ◽  
R T Premont ◽  
A M Brown

Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.


1986 ◽  
Vol 88 (4) ◽  
pp. 543-569 ◽  
Author(s):  
I Llano ◽  
R J Bookman

The cell bodies of the neurons in the giant fiber lobe (GFL) of the squid stellate ganglion give rise to axons that fuse and thereby form the third-order giant axon, whose initial portion functions as the postsynaptic element of the squid giant synapse. We have developed a preparation of dissociated, cultured cells from this lobe and have studied the voltage-dependent conductances using patch-clamp techniques. This system offers a unique opportunity for comparing the properties and regional differentiation of ionic channels in somatic and axonal membranes within the same cell. Some of these cells contain a small inward Na current which resembles that found in axon with respect to tetrodotoxin sensitivity, voltage dependence, and inactivation. More prominent is a macroscopic inward current, carried by Ca2+, which is likely to be the result of at least two kinetically distinct types of channels. These Ca channels differ in their closing kinetics, voltage range and time course of activation, and the extent to which their conductance inactivates. The dominant current in these GFL neurons is outward and is carried by K+. It can be accounted for by a single type of voltage-dependent channel. This conductance resembles the K conductance of the axon, except that it partially inactivates during relatively short depolarizations. Ensemble fluctuation analysis of K currents obtained from excised outside-out patches is consistent with a single type of K channel and yields estimates for the single channel conductance of approximately 13 pS, independently of membrane potential. A preliminary analysis of single channel data supports the conclusion that there is a single type of voltage-dependent, inactivating K channel in the GFL neurons.


1992 ◽  
Vol 263 (4) ◽  
pp. E760-E765 ◽  
Author(s):  
M. V. Kanazirska ◽  
P. M. Vassilev ◽  
S. J. Quinn ◽  
D. L. Tillotson ◽  
G. H. Williams

The effects of angiotensin II (ANG II) on single K+ channels were studied in rat and bovine adrenal zona glomerulosa (ZG) cells, using the patch-clamp technique. ANG II (0.1-10 nM) induced substantial inhibition of inward rectifier and delayed rectifier K+ channel activities in rat and bovine ZG cells. Analysis of single-channel activities showed that the ANG II-induced channel-blocking effect involved reductions in the probability of the open state (Po) and the mean open time. The changes in these channel parameters occurred at all test voltages, indicating that the effect of ANG II was voltage independent. ANG II could not interact directly with the extracellular sides of the membranes in these experiments using cell-attached patches. Therefore, the effect of ANG II on K+ channels must occur through an indirect cytosolic transduction pathway. The ANG II-induced block of K+ channels will result in membrane depolarization, which may activate voltage-dependent Ca2+ channels, thereby increasing cytosolic free Ca2+ and stimulating aldosterone secretion. These channel-modulating actions of ANG II may be an important step in the initial sequence of events underlying its transduction mechanism.


1991 ◽  
Vol 98 (1) ◽  
pp. 19-34 ◽  
Author(s):  
E Perozo ◽  
D S Jong ◽  
F Bezanilla

The effects of phosphorylation on the properties of the 20-pS channel of the squid giant axon were studied using the cut-open axon technique. Phosphorylation of the channel was achieved by photoreleasing caged ATP (inside the patch pipette) in the presence of the catalytic subunit of the protein kinase A. An inverted K+ gradient (500 K+ external parallel 5 K+ internal) was used to study the activation process. Phosphorylation decreased the frequency of openings of the channel at most potentials by shifting the probability vs. voltage curve toward more positive potentials. The mean open times showed no voltage dependence and were not affected by phosphorylation. The distribution of first latencies, on the other hand, displayed a sharp voltage dependence. Phosphorylation increased the latency to the first opening at all potentials, shifting the median first latency vs. voltage curve toward more positive potentials. The slow inactivation process was studied in the presence of a physiological K+ gradient (10 K+ external parallel 310 K+ internal). Pulses to 40 mV from different holding potentials were analyzed. Phosphorylation increases the overall ensemble probability by decreasing the number of blank traces. A single channel inactivation curve was constructed by computing the relative appearance of blank traces at different holding potentials before and after photoreleasing caged ATP. As determined in dialyzed axons, the effect of phosphorylation consisted in a shift of the inactivation curve toward more positive potentials. The 20-pS channel has the same characteristics as the delayed rectifier current in activation kinetics, steady-state inactivation, and phosphorylation effects.


1989 ◽  
Vol 94 (5) ◽  
pp. 881-910 ◽  
Author(s):  
E Cooper ◽  
A Shrier

Cultured sensory neurons from nodose ganglia were investigated with whole-cell patch-clamp techniques and single-channel recordings to characterize the A current. Membrane depolarization from -40 mV holding potential activated the delayed rectifier current (IK) at potentials positive to -30 mV; this current had a sigmoidal time course and showed little or no inactivation. In most neurons, the A current was completely inactivated at the -40 mV holding potential and required hyperpolarization to remove the inactivation; the A current was isolated by subtracting the IK evoked by depolarizations from -40 mV from the total outward current evoked by depolarizations from -90 mV. The decay of the A current on several neurons had complex kinetics and was fit by the sum of three exponentials whose time constants were 10-40 ms, 100-350 ms, and 1-3 s. At the single-channel level we found that one class of channel underlies the A current. The conductance of A channels varied with the square root of the external K concentration: it was 22 pS when exposed to 5.4 mM K externally, the increased to 40 pS when exposed to 140 mM K externally. A channels activated rapidly upon depolarization and the latency to first opening decreased with depolarization. The open time distributions followed a single exponential and the mean open time increased with depolarization. A channels inactivate in three different modes: some A channels inactivated with little reopening and gave rise to ensemble averages that decayed in 10-40 ms; other A channels opened and closed three to four times before inactivating and gave rise to ensemble averages that decayed in 100-350 ms; still other A channels opened and closed several hundred times and required seconds to inactivate. Channels gating in all three modes contributed to the macroscopic A current from the whole cell, but their relative contribution differed among neurons. In addition, A channels could go directly from the closed, or resting, state to the inactivated state without opening, and the probability for channels inactivating in this way was greater at less depolarized voltages. In addition, a few A channels appeared to go reversibly from a mode where inactivation occurred rapidly to a slow mode of inactivation.


Sign in / Sign up

Export Citation Format

Share Document