Observations of far-infrared fine structure lines - Forbidden O III 88.35 microns and forbidden O I 63.2 microns

1979 ◽  
Vol 233 ◽  
pp. 109 ◽  
Author(s):  
J. W. V. Storey ◽  
D. M. Watson ◽  
C. H. Townes
Author(s):  
E. González-Alfonso ◽  
L. Armus ◽  
F. J. Carrera ◽  
V. Charmandaris ◽  
A. Efstathiou ◽  
...  

AbstractA far-infrared observatory such as the SPace Infrared telescope for Cosmology and Astrophysics, with its unprecedented spectroscopic sensitivity, would unveil the role of feedback in galaxy evolution during the last ~10 Gyr of the Universe (z = 1.5–2), through the use of far- and mid-infrared molecular and ionic fine structure lines that trace outflowing and infalling gas. Outflowing gas is identified in the far-infrared through P-Cygni line shapes and absorption blueshifted wings in molecular lines with high dipolar moments, and through emission line wings of fine-structure lines of ionised gas. We quantify the detectability of galaxy-scale massive molecular and ionised outflows as a function of redshift in AGN-dominated, starburst-dominated, and main-sequence galaxies, explore the detectability of metal-rich inflows in the local Universe, and describe the most significant synergies with other current and future observatories that will measure feedback in galaxies via complementary tracers at other wavelengths.


2015 ◽  
Vol 12 (S316) ◽  
pp. 153-154
Author(s):  
Randolf Klein ◽  
Leslie W. Looney ◽  
Erin Cox ◽  
Christian Fischer ◽  
Christof Iserlohe ◽  
...  

AbstractThe Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution.The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail.Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations, allowing us to analyze the heated molecular gas.


2003 ◽  
Vol 209 ◽  
pp. 377-378
Author(s):  
Y. Zhang ◽  
X.-W. Liu

Mz 3 is a young bipolar planetary nebula (PN) with lobes extending over ~ 50 arcsec on the sky. It consists of a bright core, two approximately spherical bipolar lobes and two outer large filamentary bipolar nebulae. The salient features of Mz 3 are more easily studied than other bipolar nebula because of its large angular extent. It is very bright in the far-infrared. There is an extended shell of warm dust surrounding the central star. And the bipolar lobes are filled with hot ionized gas. Cohen et al. (1978) found that Mz 3 is He-rich. Based on the LWS observations of the far-IR fine-structure lines, Liu et al. (2001) derived a high N/O ratio in Mz 3 and identified the bipolar nebula as a Type-I PN.


Author(s):  
F. F. S. van der Tak ◽  
S. C. Madden ◽  
P. Roelfsema ◽  
L. Armus ◽  
M. Baes ◽  
...  

AbstractThe SPICA mid- and far-infrared telescope will address fundamental issues in our understanding of star formation and ISM physics in galaxies. A particular hallmark of SPICA is the outstanding sensitivity enabled by the cold telescope, optimised detectors, and wide instantaneous bandwidth throughout the mid- and far-infrared. The spectroscopic, imaging, and polarimetric observations that SPICA will be able to collect will help in clarifying the complex physical mechanisms which underlie the baryon cycle of galaxies. In particular, (i) the access to a large suite of atomic and ionic fine-structure lines for large samples of galaxies will shed light on the origin of the observed spread in star-formation rates within and between galaxies, (ii) observations of HD rotational lines (out to ~10 Mpc) and fine structure lines such as [C ii] 158 μm (out to ~100 Mpc) will clarify the main reservoirs of interstellar matter in galaxies, including phases where CO does not emit, (iii) far-infrared spectroscopy of dust and ice features will address uncertainties in the mass and composition of dust in galaxies, and the contributions of supernovae to the interstellar dust budget will be quantified by photometry and monitoring of supernova remnants in nearby galaxies, (iv) observations of far-infrared cooling lines such as [O i] 63 μm from star-forming molecular clouds in our Galaxy will evaluate the importance of shocks to dissipate turbulent energy. The paper concludes with requirements for the telescope and instruments, and recommendations for the observing strategy.


2014 ◽  
Vol 568 ◽  
pp. A62 ◽  
Author(s):  
Ilse De Looze ◽  
Diane Cormier ◽  
Vianney Lebouteiller ◽  
Suzanne Madden ◽  
Maarten Baes ◽  
...  

1987 ◽  
Vol 99 ◽  
pp. 832 ◽  
Author(s):  
H. Takami ◽  
T. Maihara ◽  
K. Mizutani ◽  
H. Okuda ◽  
H. Shibai ◽  
...  

2019 ◽  
Vol 631 ◽  
pp. A167 ◽  
Author(s):  
Carlos De Breuck ◽  
Axel Weiß ◽  
Matthieu Béthermin ◽  
Daniel Cunningham ◽  
Yordanka Apostolovski ◽  
...  

We present a study of six far-infrared fine structure lines in the z = 4.225 lensed dusty star-forming galaxy SPT 0418−47 to probe the physical conditions of its interstellar medium (ISM). In particular, we report Atacama Pathfinder EXperiment (APEX) detections of the [OI] 145 μm and [OIII] 88 μm lines and Atacama Compact Array (ACA) detections of the [NII] 122 and 205 μm lines. The [OI] 145 μm/[CII] 158 μm line ratio is ∼5× higher compared to the average of local galaxies. We interpret this as evidence that the ISM is dominated by photo-dissociation regions with high gas densities. The line ratios, and in particular those of [OIII] 88 μm and [NII] 122 μm imply that the ISM in SPT 0418−47 is already chemically enriched to nearly solar metallicity. While the strong gravitational amplification was required to detect these lines with APEX, larger samples can be observed with the Atacama Large Millimeter/submillimeter Array (ALMA), and should allow observers to determine if the dense, solar metallicity ISM is common among these highly star-forming galaxies.


2019 ◽  
Vol 15 (S352) ◽  
pp. 13-18
Author(s):  
Takuya Hashimoto

AbstractUnderstanding properties of galaxies in the epoch of reionization (EoR) is a frontier in the modern astronomy. With the advent of ALMA, it has become possible to detect far-infrared fine structure lines (e.g. [CII] 158 μm and [OIII] 88 μm) and dust continuum emission in star-forming galaxies in the EoR. Among these lines, our team is focusing on [OIII] 88 μm observations in high-z galaxies. After the first detection of [OIII] in the epoch of reionization (EoR) in 2016 from our team at z = 7.21, there are now more than ten [OIII] detections at z > 6 up to z = 9.11. Interestingly, high-z galaxies typically have very high [OIII]-to-[CII] luminosity ratio ranging from 3 to 12 or higher, demonstrating [OIII] is a powerful tracer at high-z. The high luminosity ratios may imply that high-z galaxies have low gas-phase metallicity and/or high ionization states.


Sign in / Sign up

Export Citation Format

Share Document