co observations
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 38)

H-INDEX

30
(FIVE YEARS 5)

2021 ◽  
Vol 922 (2) ◽  
pp. 183
Author(s):  
Xuepeng Chen ◽  
Weihua Guo ◽  
Li Sun ◽  
Jiangchen Feng ◽  
Yang Su ◽  
...  

Abstract We present wide-field multiwavelength observations of γ Cassiopeiae (or γ Cas for short) in order to study its feedback toward the interstellar environment. A large expanding cavity is discovered toward γ Cas in the neutral hydrogen (H i) images at a systemic velocity of about −10 km s−1. The measured dimension of the cavity is roughly 2.°0 × 1.°4 (or 6.0 pc × 4.2 pc at a distance of 168 pc), while the expansion velocity is ∼5.0 ± 0.5 km s−1. The CO observations reveal systematic velocity gradients in IC 63 (∼20 km s−1 pc−1) and IC 59 (∼30 km s−1 pc−1), two cometary globules illuminated by γ Cas, proving fast acceleration of the globules under stellar radiation pressure. The gas kinematics indicate that the cavity is opened by strong stellar wind, which has high potential to lead to the peculiar X-ray emission observed in γ Cas. Our result favors a new scenario that emphasizes the roles of stellar wind and binarity in the X-ray emission of the γ Cas stars.


2021 ◽  
Vol 922 (2) ◽  
pp. 106
Author(s):  
J. J. Bernal ◽  
C. D. Sephus ◽  
L. M. Ziurys

Abstract The Galactic Habitable Zone (GHZ) is a region believed hospitable for life. To further constrain the GHZ, observations have been conducted of the J = 2 → 1 transitions of methanol (CH3OH) at 97 GHz, toward 20 molecular clouds located in the outer Galaxy (R GC = 12.9–23.5 kpc), using the 12 m telescope of the Arizona Radio Observatory. Methanol was detected in 19 out of 20 observed clouds, including sources as far as R GC = 23.5 kpc. Identification was secured by the measurement of multiple asymmetry and torsional components in the J = 2 → 1 transition, which were resolved in the narrow line profiles observed (ΔV 1/2 ∼ 1–3 km s−1). From a radiative transfer analysis, column densities for these clouds of N tot = 0.1–1.5 × 1013 cm−2 were derived, corresponding to fractional abundances, relative to H2, of f (CH3OH) ∼ 0.2–4.9 × 10−9. The analysis also indicates that these clouds are cold (T K ∼ 10–25 K) and dense (n(H2) ∼ 106 cm−3), as found from previous H2CO observations. The methanol abundances in the outer Galaxy are comparable to those observed in colder molecular clouds in the solar neighborhood. The abundance of CH3OH therefore does not appear to decrease significantly with distances from the Galactic Center, even at R GC ∼ 20–23 kpc. Furthermore, the production of methanol is apparently not affected by the decline in metallicity with galactocentric distance. These observations suggest that organic chemistry is prevalent in the outer Galaxy, and methanol and other organic molecules may serve to assess the GHZ.


Author(s):  
Yuan Tian ◽  
Youwen Sun ◽  
Tobias Borsdorff ◽  
Cheng Liu ◽  
Ting Liu ◽  
...  

Abstract This work demonstrates for the first time the capability of Tropospheric Monitoring Instrument (TROPOMI) routine operations to quantify CO emission rates down to industrial point sources. We have quantified CO emission rates of four industrial point sources in Asia (i.e., Qianlishan industrial park (39.9°N, 106.9°E), Jiuyuan industrial park (40.7°N, 109.7°E) and Botian industrial park (42.2°N, 125.2°E) in China, and Jindal Factory (15.2°N, 76.7°E) in India) with TROPOMI CO observations from 2017 to 2020. The Qianlishan industrial park is a missing source in emission inventory and we quantify it to be ~14.0 kg/s. Our estimates for other three sources vary over 14.4 to 34.3 kg/s, which are within 37–69% of the inventory values. The plume inversion methods are presented in a manner that can be easily used to other fine-scale emission plumes observed from space. Though only a small number of CO plumes per year for any given industrial point source can be observed in conditions suitable for emission rates estimation, there are many industrial point sources can be captured by a good TROPOMI footprint. This work affirms that a constellation of future CO satellites could monitor individual CO point source emissions to support environment policy.


2021 ◽  
Vol 908 (1) ◽  
pp. 19
Author(s):  
Benjamin D. Boizelle ◽  
Jonelle L. Walsh ◽  
Aaron J. Barth ◽  
David A. Buote ◽  
Andrew J. Baker ◽  
...  

2020 ◽  
Vol 20 (24) ◽  
pp. 15761-15774 ◽  
Author(s):  
Tobias Borsdorff ◽  
Agustín García Reynoso ◽  
Gilberto Maldonado ◽  
Bertha Mar-Morales ◽  
Wolfgang Stremme ◽  
...  

Abstract. The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5 satellite (S5-P) measures carbon monoxide (CO) total column concentrations as one of its primary targets. In this study, we analyze TROPOMI observations over Mexico City in the period 14 November 2017 to 25 August 2019 by means of collocated CO simulations using the regional Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model. We draw conclusions on the emissions from different urban districts in the region. Our WRF-Chem simulation distinguishes CO emissions from the districts Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala, Puebla, Mexico City, and Mexico City Arena by 10 separate tracers. For the data interpretation, we apply a source inversion approach determining per district the mean emissions and the temporal variability, the latter regularized to reduce the propagation of the instrument noise and forward-model errors in the inversion. In this way, the TROPOMI observations are used to evaluate the Inventario Nacional de Emisiones de Contaminantes Criterio (INEM) inventory that was adapted to the period 2017–2019 using in situ ground-based observations. For the Tula and Pachuca urban areas in the north of Mexico City, we obtain 0.10±0.004 and 0.09±0.005 Tg yr−1 CO emissions, which exceeds significantly the INEM emissions of <0.008 Tg yr−1 for both areas. On the other hand for Mexico City, TROPOMI estimates emissions of 0.14±0.006 Tg yr−1 CO, which is about half of the INEM emissions of 0.25 Tg yr−1, and for the adjacent district Mexico City Arena the emissions are 0.28±0.01 Tg yr−1 according to TROPOMI observations versus 0.14 Tg yr−1 as stated by the INEM inventory. Interestingly, the total emissions of both districts are similar (0.42±0.016 Tg yr−1 TROPOMI versus 0.39 Tg yr−1 adapted INEM emissions). Moreover, for both areas we found that the TROPOMI emission estimates follow a clear weekly cycle with a minimum during the weekend. This agrees well with ground-based in situ measurements from the Secretaría del Medio Ambiente (SEDEMA) and Fourier transform spectrometer column measurements in Mexico City that are operated by the Network for the Detection of Atmospheric Composition Change Infrared Working Group (NDACC-IRWG). Overall, our study demonstrates an approach to deploying the large number of TROPOMI CO data to draw conclusions on urban emissions on sub-city scales for metropolises like Mexico City. Moreover, for the exploitation of TROPOMI CO observations our analysis indicates the clear need for further improvements of regional models like WRF-Chem, in particular with respect to the prediction of the local wind fields.


2020 ◽  
Vol 12 (23) ◽  
pp. 3950
Author(s):  
Yu Shi ◽  
Valerii Shulga ◽  
Oksana Ivaniha ◽  
Yuke Wang ◽  
Oleksandr Evtushevsky ◽  
...  

In this paper, a comparison of the impact of major sudden stratospheric warmings (SSWs) in the Arctic in February 2018 (SSW1) and January 2019 (SSW2) on the mid-latitude mesosphere is given. The mesospheric carbon monoxide (CO) and zonal wind in these two major SSW events were observed at altitudes of 70–85 km using a microwave radiometer (MWR) at Kharkiv, Ukraine (50.0°N, 36.3°E). Data from ERA-Interim and MERRA-2 reanalyses and Aura Microwave Limb Sounder measurements were also used. It is shown that: (i) The differences between SSW1 and SSW2, in terms of local variability in zonal wind, temperature, and CO in the stratosphere and mesosphere, were clearly defined by the polar vortex (westerly in cyclonic circulation) and mid-latitude anticyclone (easterly) migrating over the MWR station, therefore; (ii) mesospheric intrusions of CO-rich air into the stratosphere over the Kharkiv region occurred only occasionally, (iii) the larger zonal wave 1–3 amplitudes before SSW1 were followed by weaker polar vortex recovery than that after SSW2, (iv) the strong vortex recovery after SSW2 was supported by earlier event timing (midwinter) favoring vortex cooling due to low solar irradiance and enhanced zonal circulation, and (v) vortex strengthening after SSW2 was accompanied by wave 1–3 amplification in March 2019, which was absent after SSW1. Finally, the influence of the large-scale circulation structures formed in individual major SSW events on the locally recorded characteristics of the atmosphere is discussed.


2020 ◽  
Vol 904 (2) ◽  
pp. L24
Author(s):  
H. Sano ◽  
T. Inoue ◽  
K. Tokuda ◽  
T. Tanaka ◽  
R. Yamazaki ◽  
...  

2020 ◽  
Vol 643 ◽  
pp. A141 ◽  
Author(s):  
S. C. Madden ◽  
D. Cormier ◽  
S. Hony ◽  
V. Lebouteiller ◽  
N. Abel ◽  
...  

Context. Molecular gas is a necessary fuel for star formation. The CO (1−0) transition is often used to deduce the total molecular hydrogen but is challenging to detect in low-metallicity galaxies in spite of the star formation taking place. In contrast, the [C II]λ158 μm is relatively bright, highlighting a potentially important reservoir of H2 that is not traced by CO (1−0) but is residing in the C+-emitting regions. Aims. Here we aim to explore a method to quantify the total H2 mass (MH2) in galaxies and to decipher what parameters control the CO-dark reservoir. Methods. We present Cloudy grids of density, radiation field, and metallicity in terms of observed quantities, such as [O I], [C I], CO (1−0), [C II], LTIR, and the total MH2. We provide recipes based on these models to derive total MH2 mass estimates from observations. We apply the models to the Herschel Dwarf Galaxy Survey, extracting the total MH2 for each galaxy, and compare this to the H2 determined from the observed CO (1−0) line. This allows us to quantify the reservoir of H2 that is CO-dark and traced by the [C II]λ158 μm. Results. We demonstrate that while the H2 traced by CO (1−0) can be negligible, the [C II]λ158 μm can trace the total H2. We find 70 to 100% of the total H2 mass is not traced by CO (1−0) in the dwarf galaxies, but is well-traced by [C II]λ158 μm. The CO-dark gas mass fraction correlates with the observed L[C II]/LCO(1−0) ratio. A conversion factor for [C II]λ158 μm to total H2 and a new CO-to-total-MH2 conversion factor as a function of metallicity are presented. Conclusions. While low-metallicity galaxies may have a feeble molecular reservoir as surmised from CO observations, the presence of an important reservoir of molecular gas that is not detected by CO can exist. We suggest a general recipe to quantify the total mass of H2 in galaxies, taking into account the CO and [C II] observations. Accounting for this CO-dark H2 gas, we find that the star-forming dwarf galaxies now fall on the Schmidt–Kennicutt relation. Their star-forming efficiency is rather normal because the reservoir from which they form stars is now more massive when introducing the [C II] measures of the total H2 compared to the small amount of H2 in the CO-emitting region.


Sign in / Sign up

Export Citation Format

Share Document