infrared telescope
Recently Published Documents


TOTAL DOCUMENTS

384
(FIVE YEARS 43)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Vol 134 (1031) ◽  
pp. 015002
Author(s):  
John Rayner ◽  
Alan Tokunaga ◽  
Daniel Jaffe ◽  
Timothy Bond ◽  
Morgan Bonnet ◽  
...  

Abstract iSHELL is a 1.06–5.3 μm high spectral resolution spectrograph built for the 3.2 m NASA Infrared Telescope Facility (IRTF) on Maunakea, Hawaii. Dispersion is accomplished with a silicon immersion grating in order to keep the instrument small enough to be mounted at the Cassegrain focus of the telescope. The white pupil spectrograph produces resolving powers of up to about R ≡ λ/δλ = 80,000 (0.″375 slit). Cross-dispersing gratings mounted in a tiltable mechanism allow observers to select different wavelength ranges and, in combination with a slit wheel and Dekker mechanism, slit widths ranging from 0.″375 to 4.″0 and slit lengths ranging from 5″ to 25″. One Teledyne 2048 × 2048 HAWAII-2RG array is used in the spectrograph, and one Raytheon 512 × 512 Aladdin 2 array is used in a 1–5 μm slit viewer for object acquisition, guiding, and scientific imaging. iSHELL has been in productive regular use on IRTF since first light in 2016 September. In this paper we discuss details of the science case, design, construction and astronomical use of iSHELL.


2021 ◽  
Vol 21 (10) ◽  
pp. 245
Author(s):  
Shi-Dong Shen ◽  
Xiang-Qun Cui ◽  
Yong Zhang

Abstract In this paper, co-phasing errors of a segmented primary mirror tiled by hexagonal segments are successfully calculated for the 12-meter Large aperture Optical/infrared Telescope (LOT). Co-phasing errors including out-of-plane errors are simulated separately and comprehensively based on several software simulation platforms. PAOLA simulation results show that the Strehl Ratio (SR) of LOT is larger than 0.8 when the RMS value of tip-tilt obeying a normal distribution is less than 0.018 arcsec, and the SR of LOT is larger than 0.8 when the RMS value of piston obeying a normal distribution is less than 40 nm. Besides, simulation results of Zemax show that the SR of LOT is larger than 0.8 when the RMS value of tip-tilt obeying a normal distribution is less than 0.02 arcsec, and the SR of LOT is larger than 0.8 when the RMS value of piston obeying a normal distribution is less than 40 nm. These simulation results successfully lay a solid foundation for LOT (especially the segmented primary mirror with active optics).


Icarus ◽  
2021 ◽  
pp. 114691
Author(s):  
D. Takir ◽  
M. Matsuoka ◽  
A. Waiters ◽  
H. Kaluna ◽  
T. Usui

2021 ◽  
Author(s):  
Enzo Pascale ◽  
Nat Butler ◽  
Peter Nagler ◽  
Calvin B. Netterfield ◽  
Gregory Tucker ◽  
...  
Keyword(s):  

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 35
Author(s):  
Lindita Hamolli ◽  
Mimoza Hafizi ◽  
Francesco De Paolis ◽  
Achille A. Nucita

THESEUS is an ESA space based project, which aims to explore the early universe by unveiling a complete census of Gamma-ray Burst (GRB) population in the first billion years. This goal is expected to be realized by the combined observations of its three instruments on board: the Soft X-ray Imager (SXI), the X and Gamma Imaging Spectrometer (XGIS), and the InfraRed Telescope (IRT). This last one will identify, localise, and study the afterglow of the GRBs detected by SXI and XGIS, and about 40% of its time will be devoted to an all-sky photometric survey, which will certainly detect a relevant number of extragalactic sources, including Quasars. In this paper, we focus on the capability of IRT-THESEUS Telescope to observe Quasars and, in particular, Quasars lensed by foreground galaxies. In our analysis we consider the recent results for the Quasar Luminosity Function (QLF) in the infrared band based on the Spitzer Space Telescope imaging survey. In order to estimate the number of lensed Quasars, we develop Monte Carlo simulations using the mass-luminosity distribution function of galaxies and the galaxy and Quasar redshift distributions. We predict about 2.14 × 105 Quasars to be observed during IRT-Theseus sky survey, and approximately 140 of them lensed by foreground galaxies. Detailed studies of these events would provide a powerful probe of the physical properties of Quasars and the mass distribution models of the galaxies.


2021 ◽  
Vol 53 (4) ◽  
Author(s):  
John Rayner ◽  
Vishnu Reddy ◽  
Participants at the IRTF Future Directions Workshop

2021 ◽  
Vol 502 (2) ◽  
pp. 2859-2878
Author(s):  
Florian Niederhofer ◽  
Maria-Rosa L Cioni ◽  
Stefano Rubele ◽  
Thomas Schmidt ◽  
Jonathan D Diaz ◽  
...  

ABSTRACT We used data from the near-infrared Visible and Infrared Telescope for Astronomy (VISTA) survey of the Magellanic Cloud system (VMC) to measure proper motions (PMs) of stars within the Small Magellanic Cloud (SMC). The data analysed in this study comprise 26 VMC tiles, covering a total contiguous area on the sky of ∼40 deg2. Using multi-epoch observations in the Ks band over time baselines between 13 and 38 months, we calculated absolute PMs with respect to ∼130 000 background galaxies. We selected a sample of ∼2160 000 likely SMC member stars to model the centre-of-mass motion of the galaxy. The results found for three different choices of the SMC centre are in good agreement with recent space-based measurements. Using the systemic motion of the SMC, we constructed spatially resolved residual PM maps and analysed for the first time the internal kinematics of the intermediate-age/old and young stellar populations separately. We found outward motions that point either towards a stretching of the galaxy or stripping of its outer regions. Stellar motions towards the North might be related to the ‘Counter Bridge’ behind the SMC. The young populations show larger PMs in the region of the SMC Wing, towards the young Magellanic Bridge. In the older populations, we further detected a coordinated motion of stars away from the SMC in the direction of the Old Bridge as well as a stream towards the SMC.


Author(s):  
I. Kamp ◽  
M. Honda ◽  
H. Nomura ◽  
M. Audard ◽  
D. Fedele ◽  
...  

Abstract In this era of spatially resolved observations of planet-forming disks with Atacama Large Millimeter Array (ALMA) and large ground-based telescopes such as the Very Large Telescope (VLT), Keck, and Subaru, we still lack statistically relevant information on the quantity and composition of the material that is building the planets, such as the total disk gas mass, the ice content of dust, and the state of water in planetesimals. SPace Infrared telescope for Cosmology and Astrophysics (SPICA) is an infrared space mission concept developed jointly by Japan Aerospace Exploration Agency (JAXA) and European Space Agency (ESA) to address these questions. The key unique capabilities of SPICA that enable this research are (1) the wide spectral coverage $10{-}220\,\mu\mathrm{m}$ , (2) the high line detection sensitivity of $(1{-}2) \times 10^{-19}\,\mathrm{W\,m}^{-2}$ with $R \sim 2\,000{-}5\,000$ in the far-IR (SAFARI), and $10^{-20}\,\mathrm{W\,m}^{-2}$ with $R \sim 29\,000$ in the mid-IR (SPICA Mid-infrared Instrument (SMI), spectrally resolving line profiles), (3) the high far-IR continuum sensitivity of 0.45 mJy (SAFARI), and (4) the observing efficiency for point source surveys. This paper details how mid- to far-IR infrared spectra will be unique in measuring the gas masses and water/ice content of disks and how these quantities evolve during the planet-forming period. These observations will clarify the crucial transition when disks exhaust their primordial gas and further planet formation requires secondary gas produced from planetesimals. The high spectral resolution mid-IR is also unique for determining the location of the snowline dividing the rocky and icy mass reservoirs within the disk and how the divide evolves during the build-up of planetary systems. Infrared spectroscopy (mid- to far-IR) of key solid-state bands is crucial for assessing whether extensive radial mixing, which is part of our Solar System history, is a general process occurring in most planetary systems and whether extrasolar planetesimals are similar to our Solar System comets/asteroids. We demonstrate that the SPICA mission concept would allow us to achieve the above ambitious science goals through large surveys of several hundred disks within $\sim\!2.5$ months of observing time.


Author(s):  
Luigi Spinoglio ◽  
Sabrina Mordini ◽  
Juan Antonio Fernández-Ontiveros ◽  
Almudena Alonso-Herrero ◽  
Lee Armus ◽  
...  

Abstract We use the SPace Infrared telescope for Cosmology and Astrophysics (SPICA) project as a template to demonstrate how deep spectrophotometric surveys covering large cosmological volumes over extended fields (1– $15\, \rm{deg^2}$ ) with a mid-IR imaging spectrometer (17– $36\, \rm{\rm{\upmu m}}$ ) in conjunction with deep $70\, \rm{\rm{\upmu m}}$ photometry with a far-IR camera, at wavelengths which are not affected by dust extinction can answer the most crucial questions in current galaxy evolution studies. A SPICA-like mission will be able for the first time to provide an unobscured three-dimensional (3D, i.e. x, y, and redshift z) view of galaxy evolution back to an age of the universe of less than $\sim$ 2 Gyrs, in the mid-IR rest frame. This survey strategy will produce a full census of the Star Formation Rate (SFR) in the universe, using polycyclic aromatic hydrocarbons (PAH) bands and fine-structure ionic lines, reaching the characteristic knee of the galaxy luminosity function, where the bulk of the population is distributed, at any redshift up to $z \sim 3.5$ . Deep follow-up pointed spectroscopic observations with grating spectrometers onboard the satellite, across the full IR spectral range (17– $210\, \rm{\rm{\upmu m}}$ ), would simultaneously measure Black Hole Accretion Rate (BHAR), from high-ionisation fine-structure lines, and SFR, from PAH and low- to mid-ionisation lines in thousands of galaxies from solar to low metallicities, down to the knee of their luminosity functions. The analysis of the resulting atlas of IR spectra will reveal the physical processes at play in evolving galaxies across cosmic time, especially its heavily dust-embedded phase during the activity peak at the cosmic noon ( $z \sim 1$ –3), through IR emission lines and features that are insensitive to the dust obscuration.


Sign in / Sign up

Export Citation Format

Share Document