The Theory and Application of a New Method of Detecting Chromosomal Rearrangements in Drosophila melanogaster

1954 ◽  
Vol 88 (841) ◽  
pp. 225-239 ◽  
Author(s):  
E. B. Lewis
2017 ◽  
Vol 537 ◽  
pp. 60-62 ◽  
Author(s):  
Jefferson J. Soares ◽  
Mayara B. Gonçalves ◽  
Mateus C. Gayer ◽  
Matheus C. Bianchini ◽  
Aline C. Caurio ◽  
...  

Genome ◽  
1998 ◽  
Vol 41 (4) ◽  
pp. 495-503 ◽  
Author(s):  
N J Clegg ◽  
B M Honda ◽  
I P Whitehead ◽  
T A Grigliatti ◽  
B Wakimoto ◽  
...  

Suppressors of position-effect variegation (Su(var)s) in Drosophila melanogaster are usually studied in the presence of chromosomal rearrangements, which exhibit variegated expression of euchromatic genes moved near to, or heterochromatic genes moved away from, centromeric heterochromatin. However, the effects of Su(var) mutations on heterochromatic gene expression in the absence of a variegating re-arrangement have not yet been defined. Here we present a number of results which suggest that Su(var) gene products can interact to affect the expression of the light gene in its normal heterochromatic location. We initially observed that eye pigment was reduced in several Su(var) double mutants; the phenotype resembled that of light mutations and was more severe when only one copy of the light gene was present. This reduced pigmentation could be alleviated by a duplication for the light gene or by a reduction in the amount of cellular heterochromatin. In addition, the viability of most Su(var) double mutant combinations tested was greatly reduced in a genetic background of reduced light gene dosage, when extra heterochromatin is present. We conclude that Su(var) gene products can affect expression of the heterochromatic light gene in the absence of any chromosomal rearrangements. However, it is noteworthy that mutations in any single Su(var) gene have little effect on light expression; we observe instead that different pairings of Su(var) mutations are required to show an effect on light expression. Interestingly, we have obtained evidence that at least two of the second chromosome Su(var) mutations are gain-of-function lesions, which also suggests that there may be different modes of interaction among these genes. It may therefore be possible to use this more sensitive assay of Su(var) effects on heterochromatic genes to infer functional relationships among the products of the 50 or more known Su(var) loci.Key words: heterochromatin, chromatin, gene interactions.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 277-292 ◽  
Author(s):  
D F Eberl ◽  
B J Duyf ◽  
A J Hilliker

Abstract Constitutive heterochromatic regions of chromosomes are those that remain condensed through most or all of the cell cycle. In Drosophila melanogaster, the constitutive heterochromatic regions, located around the centromere, contain a number of gene loci, but at a much lower density than euchromatin. In the autosomal heterochromatin, the gene loci appear to be unique sequence genes interspersed among blocks of highly repeated sequences. Euchromatic genes do not function well when brought into the vicinity of heterochromatin (position-effect variegation). We test the possibility that the blocks of centromeric heterochromatin provide an environment essential for heterochromatic gene function. To assay directly the functional requirement of autosomal heterochromatic genes to reside in heterochromatin, the rolled (rl) gene, which is normally located deep in chromosome 2R heterochromatin, was relocated within small blocks of heterochromatin to a variety of euchromatic positions by successive series of chromosomal rearrangements. The function of the rl gene is severely affected in rearrangements in which the rl gene is isolated in a small block of heterochromatin, and these position effects can be reverted by rearrangements which bring the rl gene closer to any large block of autosomal or X chromosome heterochromatin. There is some evidence that five other 2R heterochromatic genes are also affected among these rearrangements. These findings demonstrate that the heterochromatic genes, in contrast to euchromatic genes whose function is inhibited by relocation to heterochromatin, require proximity to heterochromatin to function properly, and they argue strongly that a major function of the highly repeated satellite DNA, which comprises most of the heterochromatin, is to provide this heterochromatic environment.


Genetics ◽  
1980 ◽  
Vol 95 (2) ◽  
pp. 341-353
Author(s):  
Paul M Bingham

ABSTRACT A new mutant allele (wDZL)at the white locus of Drosophila melanogaster is dominant to the wild-type allele, but apparently only when the two alleles are synapsed. When chromosomal rearrangements prevent somatic pairing between the two white alleles, wDZL is rendered recessive to wild type. This observation suggests that the dominance of wDZL is sensitive to a synapsis (transvection) effect. On the basis of this and other properties, it is proposed that wDZL causes the repression of transcription of a synapsed w+ allele, but not of a w+ allele elsewhere in the same nucleus. One model to account for this supposes that wDzL produces a repressor of white-locus transcription. This repressor is presumed to be so unstable that other white genes, removed from wDZL but in the same nucleus, are not detectably repressed. These properties may be simply understood if it is assumed that the repressor produced by the wDZL allele is an RNA molecule.


Sign in / Sign up

Export Citation Format

Share Document