mutant allele
Recently Published Documents


TOTAL DOCUMENTS

729
(FIVE YEARS 168)

H-INDEX

52
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Xinlong Xiao ◽  
Jieqiong Zhang ◽  
Viswanathan Satheesh ◽  
Fanxiao Meng ◽  
Wenlan Gao ◽  
...  

Abstract Coordinated distribution of Pi between roots and shoots is an important process that plants use to maintain Pi homeostasis. SHR (SHORT-ROOT) is well-characterized for its function in root radial patterning1-3. Here, we demonstrate a new role of SHR in controlling phosphate (Pi) allocation from roots to shoots by regulating PHOSPHATE1 (PHO1) in the root differentiation zone. We recovered a weak mutant allele of SHR in Arabidopsis which accumulates much less Pi in the shoot and shows constitutive Pi starvation response (PSR) under Pi-sufficient condition. Besides, Pi starvation suppresses SHR protein accumulation and releases its inhibition on the HD-ZIP Ⅲ transcription factor PHB. PHB accumulates and directly binds the promoter of PHO2 to upregulate its transcription, resulting in PHO1 degradation in the xylem-pole pericycle cells. Our findings reveal a previously unrecognized mechanism of how plants repress Pi translocation from roots to shoots in response to Pi starvation.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Walter W. Wolfsberger ◽  
Nikole M. Ayala ◽  
Stephanie O. Castro-Marquez ◽  
Valerie M. Irizarry-Negron ◽  
Antoliy Potapchuk ◽  
...  

AbstractSince the first Spanish settlers brought horses to America centuries ago, several local varieties and breeds have been established in the New World. These were generally a consequence of the admixture of the different breeds arriving from Europe. In some instances, local horses have been selectively bred for specific traits, such as appearance, endurance, strength, and gait. We looked at the genetics of two breeds, the Puerto Rican Non-Purebred (PRNPB) (also known as the “Criollo”) horses and the Puerto Rican Paso Fino (PRPF), from the Caribbean Island of Puerto Rico. While it is reasonable to assume that there was a historic connection between the two, the genetic link between them has never been established. In our study, we started by looking at the genetic ancestry and diversity of current Puerto Rican horse populations using a 668 bp fragment of the mitochondrial DNA D-loop (HVR1) in 200 horses from 27 locations on the island. We then genotyped all 200 horses in our sample for the “gait-keeper” DMRT3 mutant allele previously associated with the paso gait especially cherished in this island breed. We also genotyped a subset of 24 samples with the Illumina Neogen Equine Community genome-wide array (65,000 SNPs). This data was further combined with the publicly available PRPF genomes from other studies. Our analysis show an undeniable genetic connection between the two varieties in Puerto Rico, consistent with the hypothesis that PRNPB horses represent the descendants of the original genetic pool, a mix of horses imported from the Iberian Peninsula and elsewhere in Europe. Some of the original founders of PRNRB population must have carried the “gait-keeper” DMRT3 allele upon arrival to the island. From this admixture, the desired traits were selected by the local people over the span of centuries. We propose that the frequency of the mutant “gait-keeper” allele originally increased in the local horses due to the selection for the smooth ride and other characters, long before the PRPF breed was established. To support this hypothesis, we demonstrate that PRNPB horses, and not the purebred PRPF, carry a signature of selection in the genomic region containing the DMRT3 locus to this day. The lack of the detectable signature of selection associated with the DMRT3 in the PRPF would be expected if this native breed was originally derived from the genetic pool of PRNPB horses established earlier and most of the founders already had the mutant allele. Consequently, selection specific to PRPF later focused on allels in other genes (including CHRM5, CYP2E1, MYH7, SRSF1, PAM, PRN and others) that have not been previously associated with the prized paso gait phenotype in Puerto Rico or anywhere else.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alice Grossi ◽  
Federico Morelli ◽  
Marco Di Duca ◽  
Francesco Caroli ◽  
Isabella Moroni ◽  
...  

Alexander disease is a leukodystrophy caused by heterozygous mutations of GFAP gene. Recurrence in siblings from healthy parents provides a confirmation to the transmission of variants through germinal mosaicism. With the use of DNA isolated from peripheral blood, next-generation sequencing (NGS) of GFAP locus was performed with deep coverage (≥500×) in 11 probands and their parents (trios) with probands heterozygous for apparently de novo GFAP mutations. Indeed, one parent had somatic mosaicism, estimated in the range of 8.9%–16%, for the mutant allele transmitted to the affected sibling. Parental germline mosaicism deserves attention, as it is critical in assessing the risk of recurrence in families with Alexander disease.


2021 ◽  
Vol 23 (5) ◽  
pp. 1115-1124
Author(s):  
E. M. Khasanova ◽  
L. V. Gankovskaya ◽  
V. V. Burmakina

Male infertility is a multifactorial disease, and elucidation of etiopathogenetic mechanisms of its progression is a topical issue. High percentage of the “idiopathic infertility” diagnosis is largely cased by inability to establish etiology of decrease in reproductive spermatic function. Mutation of в-defensin DEFB126 gene is supposed to affect the fertilizing ability of spermatozoa at different levels: it may decrease their ability to migrate through the cervical mucus and reduce binding capacity to epithelial layer of upper female reproductive tract, and it may also increase susceptibility for infections of reproductive tract, due to impairment of local protective function of defensins. Thus, the aim of the present study was to examine possible role of rs11468374 gene polymorphism of the DEFB126 gene in pathogenesis of male idiopathic infertility. Patients and methods: The group of patient with decreased fertility included 54 male subjects, ages 34 to 42, with a control group of 19 ejaculate donors without acute or chronic disease aged 28 to 36. The indicators of sperm motility in the Moscow population were compared with individual levels of DEFB126 gene expression, as well as with estimated distribution frequency of rs11468374 alleles and genotypes among the subjects.As compared with the control group, the infertile patients exhibited a more than seven-fold reduction of DEFB126 gene expression. Analysis of distribution frequency for alleles and genotypes rs11468374 polymorphic marker of the DEFB126 gene revealed that the mutant allele is detected almost twice as often in males with infertility, as compared with control group. No cases with the DEFB126 del/del genotype were found among the control group, in contrary to 16.1% in the group of patients. The patients with DEFB126 del/del genotype exhibited 5.2-fold reduction of sperm motility. Thus, the data obtained may be used to extend our knowledge on the pathogenetic mechanisms of male idiopathic infertility and to improve techniques for its diagnostics, as well as to provide personalized approach to the treatment of male reproductive disorders. The association between carriage of del mutant allele and decreased level of sperm motility suggests a role of this polymorphism in pathogenesis of male infertility. A general decrease in the level of DEFB126 gene expression in the patients affected by infertility also presumes a contribution of defensin 126 to pathogenesis of the disorder.


2021 ◽  
Author(s):  
Maria Azmerin ◽  
Md. Saddam Hussain ◽  
Md. Siddiqul Islam ◽  
Md. Abdul Aziz ◽  
Md. Mizanur Rahman Moghal ◽  
...  

Abstract Though the prevalence of autism spectrum disorder (ASD) is increasing day by day, there is still a lack of a proper way to diagnose or prevent ASD. There is no study carried out in the Bangladeshi children with ASD to evaluate the association of Transferrin (TF) and Transcription Factor 4 (TCF4) genetic polymorphisms. This genetic association study was designed to explore the association of rs1867503 polymorphism of TF and rs9951150 polymorphism of TCF4 genes with ASD. We collected blood from 96 children with ASD and 118 healthy children of very similar age differences. Genotyping of these SNPs was performed by the PCR-RFLP method. SPSS (version 16) was used to estimate the odds ratio (OR) and their 95% confidence intervals (CI). The frequency of mutant allele G for rs1867503 and rs9951150 polymorphisms was found 48% and 44%, respectively. In our analysis, both TF and TCF4 polymorphisms showed an increased risk for the development of ASD. AG heterozygote, GG mutant homozygote, AG+GG combined genotype, and G mutant allele of TF rs1867503 showed a significantly elevated risk of ASD development (OR=3.18, p=0.0003; OR=2.62, p=0.0128; OR=2.98, p=0.0002; and OR=1.94, p=0.001, respectively). Likewise, AG heterozygote, GG mutant homozygote, AG+GG combined genotype, and G minor allele of TCF4 rs9951150 also showed a significantly elevated risk of ASD development (OR=2.92, p=0.0007; OR=2.36, p=0.0273; OR=2.72, p=0.0005; and OR=1.92; p=0.0014, respectively). Our results indicate that TF rs1867503 and TCF4 rs9951150 polymorphisms are strongly associated with the development of ASD in Bangladeshi children.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2228-2228
Author(s):  
Wencke Walter ◽  
Heiko Müller ◽  
Claudia Haferlach ◽  
Constance Baer ◽  
Stephan Hutter ◽  
...  

Abstract Background: Copy-neutral loss-of-heterozygosity (CN-LOH) - not detectable by chromosome banding analysis - is gaining importance as a prognostic factor and can either cause the duplication of an activating mutation in an oncogene, the deletion of a tumor suppressor gene or the gain/loss of specific methylated regions. However, examination for possible CN-LOH in hematological diagnostics is at present not routinely performed and, hence, data regarding the occurrence of CN-LOH across different entities as well as the association of relevant genes is limited. Aim: (1) Frequency assessment of CN-LOH by target enrichment sequencing (TES) in a diagnostic setting, (2) evaluation of whole genome sequencing (WGS) data to estimate the prevalence of CN-LOH in a larger cohort, to pinpoint relevant genes for CN-LOHs with so far unknown associations, and to determine cross-entity variability. Patients and Methods: 1196 patients (507 female, 689 male, median age: 66 years), sent between 04/2021-07/2021 for diagnostic work-up, were analyzed by TES with a median coverage of 1765x for the gene panel and 52x for the CNV spike-in panel (IDT, Coralville, IA). Amplification-free WGS libraries of 3851 different patients were sequenced with a median coverage of 102x. Reads were aligned to the human reference genome (GRCh37, Ensembl annotation, Isaac aligner). Cnvkit (v 0.9.9) was used to call copy number variations (CNVs) and CN-LOH for TES and HadoopCNV (Yang et al. 2017) was used to call CN-LOH for WGS. Results: 1196 patients were analyzed by TES. For 10% of the patients at least one CN-LOH event was detected without any association to age or gender but a slightly higher incidence in myeloid compared to lymphoid neoplasms (10% vs 6%). In 14 patients, CN-LOH affected more than one chromosome arm. CN-LOH occurred most frequently in 4q (n = 15), 7q (n = 16), 9p (n = 25) and 11q (n = 10). As expected, 4q CN-LOH co-occurred with high variant allele frequencies (VAF) of TET2. Based on WGS data, 4q CN-LOH occurred predominately in AML (35%), CMML (22%), and MDS (20%). In rare cases, 4q CN-LOH was associated with FBXW7 variants in T-ALL. 7q CN-LOH occurred nearly exclusively in myeloid neoplasms (95%) and was associated with high VAFs in EZH2 in 69% of TES and 82% of WGS cases. CUX1 variants with high VAFs were detected in 80% (TES) and 45% (WGS) of the remaining cases, respectively. The well-known 9p CN-LOH led to JAK2V617F homozygosity in all myeloid neoplasms and occurred most often in MPNs. In T-ALL, regions of 9p CN-LOH harbored CDKN2A/B deletions. 11q CN-LOH occurred more often in myeloid than lymphoid neoplasms (79% vs 21%) and was associated with CBL variants in 61% and KMT2A-PTD in 19% of the cases. In contrast, ATM was the relevant gene in all lymphoid cases with 11q CN-LOH. CN-LOH in 11p was detected less frequently and only in 25% of cases an association with WT1 variants could be identified. Our WGS data confirmed the known associations between 1p CN-LOH and high allele burden in MPL, CSF3R and NRAS, 2p CN-LOH and DNMT3A variants, 13q CN-LOH and FLT3-ITD, the near exclusive occurrence of 16p CN-LOH in follicular lymphoma (FL, 98%) with high CREBBP-mutant allele burden , 17p CN-LOH and TP53 homozygosity, and the exclusive occurrence of 21q CN-LOH in AML and its association with RUNX1 mutations. Besides, 12q CN-LOH was associated with KMT2D in FL, with SH2B3 in MDS/MPN overlaps and in rare cases with KDM2B. For 17q CN-LOH the relevant gene was not unequivocally identifiable with high mutant allele variants in SRSF2, STAT5B, and NF1. 18q CN-LOH was a very rare event but consistently associated with a high VAF of MBD2, which presumably influences cell proliferation (Cheng et al. 2018). 19q CN-LOH was mostly (63%) associated with a high VAF of CEBPA variants, except for patients with hairy cell leukemia: in these cases nonsense mutations in CIC (VAF > 90%) were detected. CN-LOH in 22q was more common in myeloid malignancies (65% vs 35%) and associated with PRR14L mutations in the majority of myeloid cases (62%). Of note, this association occurred neither in AML samples nor in lymphoid neoplasms. No recurrent mutations were found for 6p and 14q CN-LOHs. For all other chromosomes, CN-LOH events were very rare. Conclusions: By using a CNV spike-in panel, TES adds additional diagnostic and prognostic information by enabling simultaneous detection of selected gene mutations and genome-wide CNVs, as well as CN-LOH, without increase in sequencing costs and turn-around times. Figure 1 Figure 1. Disclosures Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership. Kern: MLL Munich Leukemia Laboratory: Other: Part ownership. Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership.


Author(s):  
Junman Chen ◽  
Tian Qiu ◽  
Michael G. Mauk ◽  
Zheng Su ◽  
Yaguang Fan ◽  
...  
Keyword(s):  

2021 ◽  
Vol 20 (5) ◽  
pp. 75-83
Author(s):  
O. P. Dribnokhodova ◽  
E. A. Dunaeva ◽  
G. V. Leshkina ◽  
E. A. Yarygina ◽  
A. Yu. Bukharina ◽  
...  

Introduction. Detection of somatic mutations in the BRAF gene can be used in clinical oncology to clarify the diagnosis, select therapy and assess the prognosis of the disease. Pyrosequencing technology makes it possible to identify both already known and new mutations, as well as to determine the mutant allele ratio in the sample.The aim of the study was to develop the pyrosequencing-based method for detecting mutations in 592–601 codons of the BRAF gene.Material and Methods. The nucleotide sequences were obtained using «PyroMark Q24» instrument. The sensitivity and specificity of the method were estimated using dilutions of plasmid DNA samples containing the intact BRAF gene fragment mixed with sequence containing one of the mutations V600E, V600R, V600K, V600M, and K601E. The clinical testing was performed on 200 samples from thyroid nodules.Results. The developed method makes it possible to determine samples containing 2 % of the mutant allele for mutations V600K and V600R, 3 % for V600E and V600M, and 10 % for K601E. The pyrogram signal values for samples without mutations ranged from 0 to 19.5 % for different mutations. An analysis algorithm was developed to confirm the presence and differentiation of mutations in the 600 codon at a low proportion of the mutant allele based on the signals ratio on the pyrogram. The 47 clinical samples with mutations were found, 45 with V600E and 1 with V600_K601>E, for one sample, the type of mutation in the 600 codon could not be determined. The proportion of the mutant allele was 3.5–45 %. The concentration of extracted DNA less than 10 copies per mkl was obtained in 47 samples, of which 8 samples were found to have the mutations.Conclusion. The pyrosequencing-based method was developed for the detection of somatic mutations in 592–601 codons of the BRAF gene. The technique provided sufficient sensitivity to detect frequent mutations in the 600 codon and allowed the detection of rare mutations. Extraction of DNA from clinical samples obtained by fine-needle aspiration biopsy in most cases provided a sufficient concentration of DNA, which made it possible to use the technique in combination with cytological analysis without additional sampling. This approach can be applied to determine somatic mutations in DNA fragments of same length for other oncogenes. 


Sign in / Sign up

Export Citation Format

Share Document