position effect variegation
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 20)

H-INDEX

42
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Alexander A. Solodovnikov ◽  
Sergey A. Lavrov

In(1)wm4 was known for decades as a classic example of position effect variegation-causing rearrangement and was mentioned in hundreds of publications. Nevertheless, the euchromatin breakpoint position of the rearrangement was not precisely localized. We performed nanopore sequencing of DNA from In(1)wm4 homozygous flies and determined the exact position of euchromatic (chrX:2767875) and heterochromatic breakpoints of the rearrangement.


2021 ◽  
Author(s):  
Keith Andrew Maggert ◽  
Farah J Bughio

Position Effect Variegation (PEV) results from the juxtaposition of euchromatic and heterochromatic components of eukaryotic genomes, silencing genes near the new euchromatin/heterochromatin junctions. The degree of silencing is itself heritable through S-phase, giving rise to distinctive random patterns of cell clones expressing the genes intermixed with clones in which the genes are silenced. Much of what we know about epigenetic inheritance in the soma stems from work on PEV aimed at identifying the components of the silencing machinery and its mechanism of inheritance. Despite identifying two central gene activities - the Su(var)3-9 histone H3-Lysine-9 methyltransferase and the Su(var)205/HP1 methyl-H3-Lysine-9 binding protein - their role in PEV has been inferred from terminal phenotypes, leaving considerable gaps in understanding how PEV behaves through development. Here, we investigate the phenotypes of Su(var)3-9 and Su(var)205/HP1 mutations in live developing tissues. We discovered that mutations in Su(var)205/HP1 compromise the initial establishment of PEV in early embryogenesis. Later gains of heterochromatin-induced gene silencing are possible, but are unstable and lost rapidly. In contrast, mutations in Su(var)3-9 exhibit robust silencing early in development, but fail to maintain it through subsequent cell divisions. Our analyses show that while the terminal phenotypes of these mutations may appear identical, they have arrived at them through different developmental trajectories. We discuss how our findings further challenge existing models for epigenetic inheritance of heterochromatin-induced gene silencing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anikó Faragó ◽  
Adél Ürmösi ◽  
Anita Farkas ◽  
László Bodai

AbstractHis4r is the only known variant of histone H4 in Drosophila. It is encoded by the His4r single-copy gene that is located outside of the histone gene cluster and expressed in a different pattern than H4, although the encoded polypeptides are identical. We generated a null mutant (His4rΔ42) which is homozygous viable and fertile without any apparent morphological defects. Heterozygous His4rΔ42 is a mild suppressor of position-effect variegation, suggesting that His4r has a role in the formation or maintenance of condensed chromatin. Under standard conditions loss of His4r has a modest effect on gene expression. Upon heat-stress the induction of the Heat shock protein (HSP) genes Hsp27 and Hsp68 is stronger in His4rΔ42 mutants with concordantly increased survival rate. Analysis of chromatin accessibility after heat shock at a Hsp27 regulatory region showed less condensed chromatin in the absence of His4r while there was no difference at the gene body. Interestingly, preconditioning before heat shock led to increased chromatin accessibility, HSP gene transcription and survival rate in control flies while it did not cause notable changes in His4rΔ42. Thus, our results suggest that His4r might play a role in fine tuning chromatin structure at inducible gene promoters upon environmental stress conditions.


2021 ◽  
Author(s):  
Christian Frøkjær-Jensen

Abstract Transgenes are particularly prone to epigenetic silencing in the C. elegans germline. Here, we describe a protocol to insert introns containing a class of non-coding DNA named Periodic An/Tn Clusters (PATCs) into synthetic transgenes. PATCs can protect transgenes from position-dependent silencing (Position Effect Variegation, PEV) and from silencing in simple extra-chromosomal arrays. Using a set of simple design rules, it is possible to routinely insert up to three PATC-rich introns into a synthetic transgene in a single reaction.


BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Sigrid Hoyer-Fender

Abstract Background The Drosophila melanogaster mutant white-mottled is a well-established model for position-effect variegation (PEV). Transposition of the euchromatic white gene into the vicinity of the pericentric heterochromatin caused variegated expression of white due to heterochromatin spreading. The establishment of the euchromatin-heterochromatin boundary and spreading of silencing is regulated by mutually exclusive histone modifications, i.e. the methylations of histone H3 at lysine 9 and lysine 4. Demethylation of H3K4, catalysed by lysine-specific demethylase LSD1, is required for subsequent methylation of H3K9 to establish heterochromatin. LSD1 is therefore essential for heterochromatin formation and spreading. We asked whether drug-mediated inhibition of LSD affects the expression of white and if this induced change can be transmitted to those generations that have never been exposed to the triggering signal, i.e. transgenerational epigenetic inheritance. Results We used the lysine-specific demethylase 1 (LSD1)-inhibitor Tranylcypromine to investigate its effect on eye colour expression in consecutive generations by feeding the parental and F1 generations of the Drosophila melanogaster mutant white-mottled. Quantitative Western blotting revealed that Tranylcypromine inhibits H3K4-demethylation both in vitro in S2 cells as well as in embryos when used as feeding additive. Eye colour expression in male flies was determined by optical measurement of pigment extracts and qRT-PCR of white gene expression. Flies raised in the presence of Tranylcypromine and its solvent DMSO showed increased eye pigment expression. Beyond that, eye pigment expression was also affected in consecutive generations including F3, which is the first generation without contact with the inhibitor. Conclusions Our results show that feeding of Tranylcypromine and DMSO caused desilencing of white in treated flies of generation F1. Consecutive generations, raised on standard food without further supplements, are also affected by the drug-induced alteration of histone modifications. Although eye pigment expression eventually returned to the basal state, the observed long-lasting effect points to a memory capacity of previous epigenomes. Furthermore, our results indicate that food compounds potentially affect chromatin modification and hence gene expression and that the alteration is putatively inherited not only parentally but transgenerationally.


2020 ◽  
Author(s):  
Sigrid Hoyer-Fender

Abstract Background: The Drosophila melanogaster mutant white-mottled is a well-established model for position-effect variegation (PEV). Transposition of the euchromatic white gene into the vicinity of the pericentric heterochromatin caused variegated expression of white due to heterochromatin spreading. The establishment of the euchromatin-heterochromatin boundary and spreading of silencing is regulated by mutually exclusive histone modifications, i.e. the methylations of histone H3 at lysine 9 and lysine 4. Demethylation of H3K4, catalysed by lysine-specific demethylase LSD1, is required for subsequent methylation of H3K9 to establish heterochromatin. LSD1 is therefore essential for heterochromatin formation and spreading. We asked whether drug-mediated inhibition of LSD affects the expression of white and if this induced change can be transmitted to those generations that have never been exposed to the triggering signal, i.e. transgenerational epigenetic inheritance.Results: We used the lysine-specific demethylase 1 (LSD1)-inhibitor Tranylcypromine to investigate its effect on eye colour expression in consecutive generations by feeding the parental and F1 generations of the Drosophila melanogaster mutant white-mottled. Quantitative Western blotting revealed that Tranylcypromine inhibits H3K4-demethylation both in vitro in S2 cells as well as in embryos when used as feeding additive. Eye colour expression in male flies was determined by optical measurement of pigment extracts and qRT-PCR of white gene expression. Flies raised in the presence of Tranylcypromine and its solvent DMSO showed increased eye pigment expression. Beyond that, eye pigment expression was also affected in consecutive generations including F3, which is the first generation without contact with the inhibitor.Conclusions: Our results show that feeding of Tranylcypromine and DMSO caused desilencing of white in treated flies of generation F1. Consecutive generations, raised on standard food without further supplements, are also affected by the drug-induced alteration of histone modifications. Although eye pigment expression eventually returned to the basal state, the observed long-lasting effect points to a memory capacity of previous epigenomes. Furthermore, our results indicate that food compounds potentially affect chromatin modification and hence gene expression and that the alteration is putatively inherited not only parentally but transgenerationally.


2020 ◽  
Author(s):  
Sigrid Hoyer-Fender

Abstract Background: The Drosophila melanogaster mutant white-mottled is a well-established model for position-effect variegation (PEV). Transposition of the euchromatic white gene into the vicinity of the pericentric heterochromatin caused variegated expression of white due to heterochromatin spreading. The establishment of the euchromatin-heterochromatin boundary and spreading of silencing is regulated by mutually exclusive histone modifications, i.e. the methylations of histone H3 at lysine 9 and lysine 4. Demethylation of H3K4, catalysed by lysine-specific demethylase LSD1, is required for subsequent methylation of H3K9 to establish heterochromatin. LSD1 is therefore essential for heterochromatin formation and spreading. We asked whether drug-mediated inhibition of LSD affects the expression of white and if this induced change can be transmitted to those generations that have never been exposed to the triggering signal, i.e. transgenerational epigenetic inheritance.Results: We used the lysine-specific demethylase 1 (LSD1)-inhibitor Tranylcypromine to investigate its effect on eye colour expression in consecutive generations by feeding the parental and F1 generations of the Drosophila melanogaster mutant white-mottled. Quantitative Western blotting revealed that Tranylcypromine inhibits H3K4-demethylation both in vitro in S2 cells as well as in embryos when used as feeding additive. Eye colour expression in male flies was determined by optical measurement of pigment extracts and qRT-PCR of white gene expression. Flies raised in the presence of Tranylcypromine and its solvent DMSO showed increased eye pigment expression. Beyond that, eye pigment expression was also affected in consecutive generations including F3, which is the first generation without contact with the inhibitor. Conclusions: Our results show that feeding of Tranylcypromine and DMSO caused desilencing of white in treated flies of generation F1. Consecutive generations, raised on standard food without further supplements, are also affected by the drug-induced alteration of histone modifications. Although eye pigment expression eventually returned to the basal state, the observed long-lasting effect points to a memory capacity of previous epigenomes. Furthermore, our results indicate that food compounds potentially affect chromatin modification and hence gene expression and that the alteration is putatively inherited not only parentally but transgenerationally.


2020 ◽  
Author(s):  
Sigrid Hoyer-Fender

Abstract Background: The Drosophila melanogaster mutant white-mottled is a well-established model for position-effect variegation (PEV). Transposition of the euchromatic white gene into the vicinity of the pericentric heterochromatin caused variegated expression of white due to heterochromatin spreading. The establishment of the euchromatin-heterochromatin boundary and spreading of silencing is regulated by mutually exclusive histone modifications, i.e. the methylations of histone H3 at lysine 9 and lysine 4. Demethylation of H3K4, catalysed by lysine-specific demethylase LSD1, is required for subsequent methylation of H3K9 to establish heterochromatin. LSD1 is therefore essential for heterochromatin formation and spreading. We asked, whether drug-mediated inhibition of LSD affects expression of white and if this induced change can be transmitted to those generations that have never been exposed to the triggering signal, i.e. transgenerational epigenetic inheritance.Results: We used the lysine-specific demethylase 1 (LSD1)-inhibitor Tranylcypromine to investigate its effect on eye colour expression in consecutive generations by feeding the parental and F1 generations of the Drosophila melanogaster mutant white-mottled . Quantitative Western blotting revealed that Tranylcypromine inhibits H3K4-demethylation both in vitro in S2 cells as well as in embryos when used as feeding additive. Eye colour expression in male flies was determined by optical measurement of pigment extracts and qRT-PCR of white gene expression. Flies raised in the presence of Tranylcypromine and its solvent DMSO showed increased eye pigment expression. Beyond that, eye pigment expression was also affected in consecutive generations including F3, which is the first generation without contact to the inhibitor.Conclusions: Our results show that feeding of Tranylcypromine and DMSO caused desilencing of white in treated flies of generation F1. Consecutive generations, raised on standard food without further supplements, are also affected by the drug-induced alteration of histone modifications. Although eye pigment expression eventually returned to the basal state, the observed long-lasting effect points to a memory capacity of previous epigenomes. Furthermore, our results indicate that food compounds potentially affect chromatin modification and hence gene expression, and that the alteration is putatively inherited not only parentally but transgenerationally.


Author(s):  
Jekabs Krigerts ◽  
Kristine Salmina ◽  
Talivaldis Freivalds ◽  
Felikss Rumnieks ◽  
Inna Inashkina ◽  
...  

Finding out how cells with the same genome change fates in differentiation commitment is a challenge of biology. We used MCF-7 breast cancer cells treated with the ErbB2 ligand heregulin (HRG), which induces differentiation, to address if and how the constitutive pericentromere-associated domains (PADs) may be involved in this process. PAD-specific repressive heterochromatin (H3K9me3) and active euchromatin (H3K4me3) marking, centromere (CENPA) labelling, qPCR, acridine-orange-DNA structural test, and microscopic image analysis were applied. We found a two-step DNA unfolding, at 15-20 min and 60 min after HRG treatment, coinciding with bi-phasic activation of the early response genes (c-FOS family) and two steps of critical phase transition which were revealed in transcriptome studies. In control, the distribution of PAD number and size displays a power-law scaling with a boundary at the nucleolus. PADs’ clustering correlates with centromere numbers. 15 min after HRG treatment, the unravelling of PADs occurs, coinciding with the first step of euchromatin unfolding. The second step is associated with transcription of long-non-coding-RNA from satellite III DNA. We hypothesize that splitting of the PAD clusters under the critical size threshold of the silencing domain abrupts position effect variegation. It allows the first genome transcription avalanche to occur, starting differentiation commitment.


2020 ◽  
Vol 7 (3) ◽  
pp. 191976 ◽  
Author(s):  
Prim B. Singh ◽  
Andrew G. Newman

The relationship between compartmentalization of the genome and epigenetics is long and hoary. In 1928, Heitz defined heterochromatin as the largest differentiated chromatin compartment in eukaryotic nuclei. Müller's discovery of position-effect variegation in 1930 went on to show that heterochromatin is a cytologically visible state of heritable (epigenetic) gene repression. Current insights into compartmentalization have come from a high-throughput top-down approach where contact frequency (Hi-C) maps revealed the presence of compartmental domains that segregate the genome into heterochromatin and euchromatin. It has been argued that the compartmentalization seen in Hi-C maps is owing to the physiochemical process of phase separation. Oddly, the insights provided by these experimental and conceptual advances have remained largely silent on how Hi-C maps and phase separation relate to epigenetics. Addressing this issue directly in mammals, we have made use of a bottom-up approach starting with the hallmarks of constitutive heterochromatin, heterochromatin protein 1 (HP1) and its binding partner the H3K9me2/3 determinant of the histone code. They are key epigenetic regulators in eukaryotes. Both hallmarks are also found outside mammalian constitutive heterochromatin as constituents of larger (0.1–5 Mb) heterochromatin -like domains and smaller (less than 100 kb) complexes. The well-documented ability of HP1 proteins to function as bridges between H3K9me2/3-marked nucleosomes contributes to polymer–polymer phase separation that packages epigenetically heritable chromatin states during interphase. Contacts mediated by HP1 ‘bridging’ are likely to have been detected in Hi-C maps, as evidenced by the B4 heterochromatic subcompartment that emerges from contacts between large KRAB-ZNF heterochromatin -like domains. Further, mutational analyses have revealed a finer, innate, compartmentalization in Hi-C experiments that probably reflect contacts involving smaller domains/complexes. Proteins that bridge (modified) DNA and histones in nucleosomal fibres—where the HP1–H3K9me2/3 interaction represents the most evolutionarily conserved paradigm—could drive and generate the fundamental compartmentalization of the interphase nucleus. This has implications for the mechanism(s) that maintains cellular identity, be it a terminally differentiated fibroblast or a pluripotent embryonic stem cell.


Sign in / Sign up

Export Citation Format

Share Document