The Influence of Temperature on Genetic Interrelationships of Life History Traits in a Population of Drosophila melanogaster: What Tangled Data Sets We Weave

1982 ◽  
Vol 119 (4) ◽  
pp. 464-479 ◽  
Author(s):  
James T. Giesel ◽  
Patricia A. Murphy ◽  
Michael N. Manlove
1962 ◽  
Vol 94 (6) ◽  
pp. 667-671 ◽  
Author(s):  
C. A. Barlow

Life-history and development of Macrosiphum euphorbiae (Thomas) have been studied by Smith (1919), Patch (1925), and MacGillivray and Anderson (1958). In most of these studies, considerable variation in temperature was experienced. The effects of different constant temperatures have never been reported. The following experiments were conducted to determine the influence of temperature on development, survival, and fecundity of M. euphorbiae under closely controlled conditions.


Evolution ◽  
2005 ◽  
Vol 59 (8) ◽  
pp. 1721 ◽  
Author(s):  
Paul S. Schmidt ◽  
Luciano Matzkin ◽  
Michael Ippolito ◽  
Walter F. Eanes

1970 ◽  
Vol 15 ◽  
pp. 41-46 ◽  
Author(s):  
MM Rahman ◽  
W Islam ◽  
KN Ahmed

Xylocoris flavipes (Reuter) is one of the dominant predators of many stored product insect pest including Cryptolestes pusillus. The influence of temperature on predator development, survival and some selected life history parameters was determined. Eggs laid/female (27.27±2.52) and egg hatching rate (%) (88.25±2.19) were highest at 30°C and lowest at 20°C (5.43±1.19 and 30.79±4.63%) respectively but no eggs laid at 15°C. Mortality among immature stages (%) was highest (51.71±1.48) at 35°C and lowest (24.25c±1.14) at 25°C. Developmental times decreasing with the increasing of temperature. Maximum numbers of progeny/female/day (3.55±0.76) were produced at 25°C and minimum (0.83±0.04) were at 20°C.The sex ratios (% female) of X. flavipes were 47.04, 56.68, 51.66 and 50.07 for 20, 25, 30 and 35°C respectively. Survivorship of ovipositing females was highest at 25°C but lowest at 35°C respectively. Key words: Xylocoris flavipes, Cryptolestes pusillus, life history, temperature, developmental time   doi: 10.3329/jbs.v15i0.2201 J. bio-sci. 15: 41-46, 2007


Sign in / Sign up

Export Citation Format

Share Document